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Abstrakt

V mojej diplomovej praci odvadzam lagranzidn pre teériu MSSM vo formalizme super-
priestoru a superpoli. Mojou snahou je, aby vysledné notacia ¢o najviac sithlasila s nota-
ciou, ktord sa pouziva na Institate Fyziky Vysokych Energii vo Viedni. Pocitam sirku
rozpadu pre rozpad neutralina na antisbottom a bottom quark na jednosluckovej trovni
s uvazenim iba QCD korekcii, pricom pouzivam Feynmanové pravidla, ktoré vyplyvaja z
odvodeného lagranzianu. V zavere prace uvadzam grafy, na ktorych sirky rozpadu a hmot-
nosti castic zavisia od MSSM parametrov.

Diplomova praca je rozvrhnuta nasledovnym sposobom:
V prvej kapitole podéavam strucny tvod do tedrie supersymetrického modelu.

V druhej a tretej kapitole je nacrtnuté odvodenie minimélneho supersymetrického la-
granzianu pre vSeobecné superpolia.

V stvrtej kapitole dosddzam konkrétne superpolia, ktorych c¢asticovy obsah pozostava z
poli znamych zo Standardného Modelu ako aj z novych predpovedanych poli, ktoré este
len ¢akaji na svoj objav na budtucich a mo’no uZ aj stacasnych urychlovacoch. Dalej
odvadzam vertexy, ktoré si dolezité pri vypocte Sirky rozpadu.

V piatej kapitole sa venujem renormalizécii MSSM. Zaoberam sa hlavne renormalizaciou
sfermiénovych ako aj fermiénovych poli.

Posledné, Siesta kapitola obsahuje vypocet Sirky rozpadu na stromovej ako aj na jed-
nosluckovej trovni. Na konci tejto kapitoly uvadzam vysledné grafy.

V dodatku A, na konci prace, uvadzam prehlad vztahov, ktoré st doélezité pri praci so

spinormi a Grassmanovymi ¢islami. Zaroven definujem notaciu, ktora pouzivam.
V dodatku B st uvedené ru¢ne zratané generické diagramy.

kl'aéoveé slova: tedria MSSM, formalizmus superpriestoru, rozpad neutralina
) ) b

QCD korekcie

iii



Abstract

In my master thesis I derive the lagrangian for the MSSM theory using the formalism of
superspace and superfields. I try to be as close to the notation that is used at the Insti-
tute for High Energy Physics in Vienna as possible. I calculate the decay width for the
neutralino decay to an antisbottom and a bottom quark at a one loop level considering
only the QCD corrections using Feynman rules coming from the derived lagrangian. At
the end of my thesis I present graphs where the decay widths and particle masses depend
on various MSSM parameters.

The thesis is divided into the following parts:
In the first chapter I shortly introduce the theory of a supersymmetric model.

In the second and third chapter I present the derivation of the minimal supersymmet-
ric lagrangian for the general superfields.

In the fourth chapter I put concrete superfields into the lagranian those particle content
comprise of the fields known from the Standard Model as well as from the new predicted
fields which are yet to be found on the future and maybe on the present-day colliders. I
also derive the vertices important for the neutralino decay.

The fifth chapter deals with the renormalization of the MSSM. I focus mainly on the
renormalization of the fermion as well as of the sfermion fields.

The last sixth chapter includes the calculation of the tree and one loop level decay width.
At the end of the chapter I present the resulting graphs.

In the appendix A I present the summary of the identities which are essential to the
work with spinors and Grassman numbers. I define the notation at the same time.
The appendix B involves the generic diagrams calculated by hand.

keywords: MSSM theory, superspace formalism, neutralino decay, QCD corrections
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Chapter 1

Introduction

The Standard Model of elementary particle physics (SM) is a remarkably successful theory
of the known particles and their electroweak and strong forces. Although the SM correctly
describes all known microphysical nongravitational phenomena, there are a number of
theoretical and phenomenological issues that the SM fails to address adequately, whereas
the MSSM provides explanations [1].

e Hierarchy problem

Phenomenologically the mass of the Higgs boson associated with the electroweak
symmetry breaking must be in the electroweak range. However, radiative corrections
to the Higgs mass are quadratically dependent on the UV cutoff A, since the masses
of the fundamental scalar fields are not protected by chiral or gauge symmetries.
The "natural”" value of the Higgs mass is therefore of O(A) rather than O(100GeV'),
which leads to a destabilization of the hierarchy of the mass scales in the SM.

The MSSM introduces new particles into the theory that couple to the Higgs and
appear in the loop. These particles cancel the quadratic divergence and thereby solve
the hierarchy problem.

e Gauge coupling unification

In the contrast to the SM, the MSSM allows for the gauge coupling unification. The
extrapolation of the low energy values of the gauge couplings using renormalization
group equations and the MSSM particle content shows that the gauge coupling unify
at the scale 3 x 1016 GeV. This quality lends credence to the picture of grand unified
theories (GUTS) and certain string theories. Precise measurements of the law en-
ergy values of the gauge coupling demonstrated that the SM cannot describe gauge
coupling unification.

e Flectroweak symmetry breaking (EWSB)
In the SM, electroweak symmetry breaking is parametrized by the Higgs boson h and
its potential V' (h). However, the Higgs sector is not constrained by any symmetry
principles, the negativeness of the parameter 2 is put into the theory by hand.
The MSSM provides an explanation of the origin of EWSB.

e Dark matter
In supersymmetric theories, the lightest superpartner (LSP) can be stable. This
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particle provides a very good candidate for the cold dark matter.

Supersymmetry algebra

The theorem of Coleman and Mandula [2| demonstrates that the most general group
of symmetries of the S-matrix is locally isomorphic to the direct product of a compact
symmetry group and the Poincaré group. Haag, Lopuszanski and Sohnius extended the
theorem by generalization of the notion of a Lie algebra to include algebraic systems whose
defining relations involve in addition to the usual commutators also anticommutators [3].
These algebras are called superalgebras.

The simplest superalgebra involves only one set of the fermionic generators Q. (|4],5],[6])

[PH,P"] = 0 (1.1)
[M* P = (g Pt — P (1.2)
[MH, MP7] = i(n"P MM + ' MY — PP MY — 0" MP) (1.3)
[P*,Qa] = 0 = [P",Qdl (1.4)
[M*.Q.] = —i(a’“’)abe (1.5)
[M*,Q% = —i(e")%Q" (1.6)
{Qa,Qp} = 0 = {Qu, @} (1.7)
{QChQi)} = 205[)PM (1.8)

In this set of equations we have omitted the generators of the internal symmetry group
which commutes with P,, M, but their presence is of course allowed by the two previously
mentioned theorems. This symmetry group is the known SU(3)c ® SU(2)r, @ U(1)y.

An irreducible representation of the superalgebra has the number of fermionic states equal
to the number of bosonic states. This can be proved with the help of equation (1.8) and
realizing that the generators 0, Q; change a bosonic state into a fermionic one and vice
versa.

The supersymmetry predicts many new particles. Because the generators ), commute
with the mass squared operator P? = P, P the particles and its superpartners poses
equal masses. However, this does not agree with the observed phenomena therefore the
supersymmetry must be broken.

The Minimal Supersymmetric Standard Model (MSSM) extends the Standard Model in
a minimal manner. That means, incorporating only one set of SUSY generators into the
theory. Moreover, in the MSSM one makes the minimal choice of the Higgs sector, works
only with two Higgs doublets. The SUSY is broken explicitly by the so-called soft SUSY
breaking mechanism which allows for terms causing no quadratic divergences.



Chapter 2

Superspace and Superfields

2.1 General superfield

It is possible to derive a supersymmetric theory without using the formalism of superspace.
Such treatment is described in Martin’s Supersymmetry primer [7]. But the more elegant
way is to work in the superfield language. In this formalism the supersymmetry is inher-
ently manifest like Lorentz invariance in four dimensional Minkowski space.

In supersymmetric models this four dimensional space is extended to superspace. Su-
percoordinates consist of the usual four Minkowski coordinates and of four anticommuting
Grassman numbers that can be compactly written by the use of the two Weyl spinors.

superspace coordinates: (z*,0,,0;) a=1,2 a=1,2

A general superfield ® is an operator-valued function defined on superspace and is un-
derstood in terms of its power series expansion in 6 and 6. In addition, superfield is a
Lorentz scalar or pseudoscalar as we want to build a supersymmetric lagrangian that is
Lorentz invariant.

(2,0,0) = f(z)+0"Pa(x) + 0ax"(2) + (00)m(z) + (00)n(z)
+(00"0)V,,(z) + (00)0,\" () + (00)0Y, ()
+(00)(00)d(x) (2.1)
The elements f(z), ¢q(z), x%(z) ... are called component fields.

An element of the subgroup of the supersymmetry group (when we omit My, ) is
G(2,0,0) = expli(—a" Py + 0Q + 0Q)] (2:2)

Now we would like to construct linear representation of this group (of the superalgebra).
We consider the right action induced in (2*, 6,, 6;) parameter space by the group elements

G(x,0,0)G(a,€,€) = expli( — (& +a") P, — (60" D) P, +i(05"E) Py

+ 0+OQ+(E+8)Q)]
= G +a +i(Eo"D) — i(00"€),0+€.0+ &) = G(B) (2.3)
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. 1
where we have used the relation: e?eB = eA+B+3[AB]+...

Thus the supersymmetric generators induce the motion in group parameter space:
(x,0,0) — (B). For a superfield that is a function on the superspace we have

] = - 0P 0P 0P
= 2 ; Ho _ 4 s a .
®(B) O(x,0,0) + (a +i&c"0 — ifo f)—axu +¢ 502 + ga_aed +...

£ (1 —ia“PM+i§Q+i§Q+...><I>(x,0,§) (2.4)

Hence the supersymmetric generators and momentum generator represented as differential
operators are given by

P, = id,
, O . b
1Q, = 20° +i(a"),;,070,
. 9 .
Q" = o +1i(5")* 0,0, (2.5)

This is the linear representation of the supersymmetry algebra we were looking for. It can
be explicitly verified that the generators satisfy the relations of superalgebra. Next we will
show that the anticommuting relation (1.8) holds

{Qa,Qj}® = —{0a +ic";0°0,,—0; — i0°0",;0,} P
= {00, 9,}® +i{8,,6%0",,0,}® + i{0" .00, 0;} P
- {o" ,0%,, HbUVbba,,}@ = QO-Mai)PH(b (2.6)

where for example
{0%,0%",.0,}® = 0,[0°0",,0,@] + 0’0", 0,0,
b b b .
= 6a0“b58u‘1> -0 U”bi)a“@aq) +0 a“bbauaafb = w”abau@ (2.7)

The infinitesimal supersymmetric transformation (not considering momentum generator)
can be seen from the relations (2.2) and (2.3)

d — D+0gP
bs = i(EQ+£Q) (2.8)
Next we define covariant derivatives
Dy = 0, —i(c"),;0°,
D* = 9" —i(a")™0,0, (2.9)

The very important feature (hence its name) of covariant derivatives is that they commute
with the infinitesimal supersymmetric transformation

[Da,éS] =
[Da,ds] = 0 (2.10)
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The general superfield does not provide an irreducile representation of the supersymmetry
algebra. By imposing the constraints that are covariant under the algebra we come to an
irreducible representation. These constraints yield the following three types of superfields

D;®(x,0,0) = 0 — left-handed chiral (scalar) superfield

D,®(2,0,0) =
®(z,0,0) = ®(x,0,0) — vector superfield (2.11)

l

right-handed chiral (scalar) superfield

2.2 Chiral superfields

2.2.1 Left-handed chiral superfield

Our aim is to find out a superfield that satisfies the first condition in (2.11). It is easier to
solve the constraint in terms of the new variables (y,6’,6’) where
Yyt =zt —iflohl

0, = 00,0, = 05 (2.12)
The covariant derivative after transforming to this new variables is

0

Dy = ——
00
y7

(2.13)
0

Now to get general solution it suffices (because D;(z)y* = 0, Dsy(2)0 = 0 and because the
® cannot contain the variable 6 as the relation (2.13) indicates) to expand the superfield
in the variables y, 0

®(y,0) = dly) + V20¢(y) + 00F (y) (2.14)

where ¢, F' are complex scalar fields (giving four bosonic degrees of freedom) and v is
left-handed Weyl spinor (four fermionic degrees of freedom). The dependence on the left-
handed spinor is the origin for the name of left-handed superfield. We will see later that
the field F plays the role of auxiliary field (does not have a dynamical term in lagrangian).

Transforming back to the original variables we obtain
O(x,0,0) = ¢(x) + V20(x) + 00F (x) — id,6(x) (")
_ 1 _ _
— iV/200,9(x)(00"0) — 5 Oudu0(2)(050) (00" 0) (2.15)

And using relations (A.8), (A.12) we come to the final expression

O(x,0,0) = ¢(x)+V200(x) + 00F () — id,p(x)(00"0)
(00)8,1) ()0 i(@@)(éé)@uauqb(x) (2.16)

7

B
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2.2.2 Right-handed chiral superfield

Right-handed superfield satisfies the second condition in (2.11). One can derive the solution
in analogous way to previous subsection. The new variables are

M =2t +ifot0
0 = 00,0, = 05 (2.17)

Then the covariant derivative transforms to be

0

Dy =— .
o= 3pa| (2.18)
z,0
Expansion of right-handed superfield in new variables is
DT(2,0) = ¢* (2) + V200 (2) + 00F*(2) (2.19)

And after transforming back to the original variables the final expression is as follows

O(2,0,0) = ¢*(x) + V200 (x) + 00F*(z) +i0,0" (x)00"0

)
E(éé)@a“@wﬁ(m) (00)(08)9,0" 6" (x) (2.20)

We finally remark that z/ is complex conjugate of y* and (after realizing the identity
(A.7)) the superfield ®' is conjugate of the superfield ® as one could anticipate earlier.

1
4

Next we show sum of left and right chiral superfield which will become important later by
definition of gauge transformation of vector superfield.

D(z)+ 0T (2) = o(x)+ ¢*(x) + V20(z) + V200 (x)

+ (00)F(x) + (00)F* () + i05+00, (4" (x) - 6(x))

5080 () — 5 (00)000,0(x)
— O0E0)0,0 (9(x) + 6" (x) (221)

2.2.3 Supersymmetric transformation of component fields

The transformation law for a general superfield is defined by components. In this subsection
we will demonstrate as an example the transformation of the components of the left-handed
chiral superfield

5P (y) = dsd(y) + V20551(y) + 0055 F (y) (2:22)

It is easier to work with the generators @) (2.5) written in variable y

iQa(y) = 0O, _
iQy) = 9*—2i0°" %9, (2.23)
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When we apply the last two equations on the relation (2.8) we obtain
55® = V2&4) + 260F + iV/2(00)(0,00™E) — 2i(00+€)D, b (2.24)

And after the comparison of the terms standing by the equal power of Grassman number
0 in relations (2.22), (2.24) we finally come to the transformed component fields

0s¢ = V2 (2.25)
dsta = V26F — V20" 8,0 (2.26)
6sF = iV2(01bat€) (2.27)

We observe that the field F transforms into a total divergence. This will become important
when constructing supersymmetric lagrangian implying its invariance under supersymmet-
ric transformation.

2.2.4 Products of chiral superfields

For the construction of supersymmetric lagrangian one needs the products ®;®;, <I>;[<I>j,
®;®;P where indices 1, j, k distinguish various superfields. The higher products lead to
nonrenormalizable theories therefore we will not consider them.

The product of chiral superfields of the equal handedness is a chiral superfield of the
same handedness

iy, 0)0;(y,0) = &i(y)o;(y) + V20 (i) (W) + 6i(v)e; ()
+ 00(6:(w)F5 () + &5 (1) Fiy) — dly)ds () (2:28)

Pi(y, 0)®;(y, 0)Pw(y, 0) = di(y)d; (y)Pr(y)
+v/20(vi(y) 5 (1) 6 () + 6 (9); W) () + 6 (1) (1) () )

+00(6:(4) 05 (¥) Fi(y) + 6:(y) Fy (9) 6 () + Fi(y)65 () 6k (v)

—iy) 5 () 8x(y) — i) be(v) @ () — b5 (W)Uk(y)6:(v) ) (2.29)
DI()05(x) = ..~ (O0)F0) 67 ()00 05(x) + 65(2),0 5 (x)]

+ (00"0)(00"0)(9, 67 (2))(Dy b5 () — i(00) (00D, (2)) (00 ()

+ <0¢z< ))(00)(Dyutt ()00) + (00)(80) Fy () Fy ()

0)
00)(00) [F} () Fy(x) — ¢; (2)(0,0"6(x))
- <m<> v;(@))] (2.30)

The last product is not a chiral superfield but vector superfield treated in the following
section. We have explicitly showed only the (#6)(6) - component as this component in
general superfield also transforms into a total divergence under a supersymmetric trans-
formation and therefore becomes important for the construction of the supersymmetric
invariant lagrangian.
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2.3 Vector superfield

The third type of a superfield is a vector superfield. In deriving its component expansion
we start from the expression for a general superfield

O(x,0.0) = C(x)+0°a(x) + 0ax"(x) + (09)M () + (PN (x)
+(0510)V,, () + (80)0:)% () + (99)0%pq ()
+(06)(60)D(x) (2.31)

If we require ®(z,0,0) = ®f(x,0,0) then we are left with the following restrictions

C=C" V,=V; D=D" (2.32)
M*=N ¢=yx A=1 (2.33)

The vector superfield thus consists of two Weyl spinors A, x (eight real fermionic degrees
of freedom), two real scalars C, D, one complex scalar M and one real vector V,, (giving
altogether eight real bosonic degrees of freedom).

Now we rewrite the vector superfield in a more convenient way in which certain com-
ponents of V are invariant under gauge transformation that will be defined below. We
achieve this by sending

Mz) — A(x)—%a”@u)z(x) (2.34)
D) — %D(m)—i&,ﬁ“C(m) (2.35)

The helpful relation one will need is (o ab)T = o",,. Finally we obtain

V(z,0,0) = C(x)+0x(x)+0x(z) + (00)M(z) + (00)M*(z)

g
+ 000V, (x) + (00)0(A() %6“(%)(@))
- (00)0(A@) - %U“@M)Z(x)> + (69)(0) (%D(m) - iauaucu)) (2.36)

The supersymmetric generalization of a gauge transformation is defined as

V(z,0,0) — V(z,0,0)+ ®(x,0,0)+ d(z,0,0)

— V(x,0,0) +iA(x,0,0) —iAT(z,0,0) (2.37)
where @ is some left-handed chiral superfield. In component fields the gauge transformation
gives

C—C+o+e¢" V= V,i+i0u(¢" —9)
X — X+ V29 A— A
M—-M+F D— D (2.38)

We see that the component fields A, D are invariant under the gauge transformation.
Equally important observation is that vector component V), transforms into a gradient.
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This motivated us to define the gauge transformation in the presented form.

From the set of equations (2.38) we see that we can choose particular scalar field ® (that
is particular gauge) in which the fields C, y, M vanish. This gauge is called Wess-Zumino
gauge. We remark that this gauge does not fix the imaginary part of the field ¢, we are
free to set it zero.

When we finally redefine A — —iX\ and A\ — i\ we get
_ _ _ - 1 .
Vivz(x,0,0) = 05”0V, (x) + i(00)0X(x) — i(00)0(x) + 5(00)(00)D(x) (2.39)

The advantage of the Wess-Zumino gauge is that the third and higher powers of the vector
superfield V equal zero. Then for instance

exp(V) = L4V 4 2V = 1+ 00"9V, (a) + i(60)07(x) — i(F0)0A(x)

+(00)(30) (%D(x) + iV”(m)VM(aﬂ)) (2.40)

2.4 Field strength superfield

The supersymmetric field strength for an arbitrary vector superfield V is defined by its
components

1 _ _
Wa = —(DD)D.V

1
Wi = —4(DD)D;V (2.41)

These spinor superfields are chiral ones (they satisfy the first two constraints in (2.11)).
With the help of the relation {D,D}® ~ P,® and [D,P,] = 0 one can prove that the
superfields are also gauge invariant.

When expanding the superfield W, the most plausible way is to calculate it in the variable
y since the two covariant derivatives (DD) become very simple. We start our calculating
with

DV(y) = (9 —2ic" ;0°0,)[00"8V, (y) +i(00)07(y) — i(9)OA(y)
- %(09)(59‘) (D) +i0,V" ()] (2.42)
with the realization of the following relation
—EDD(éé) _ —i(—adad)(éé) _ %adad _1 (2.43)
it is not complicated to come to the expanded form of the field strength W,

Waly) = —ida(y) +0.D(y) — (00)c" .0, (y)
+ ia“abebéﬂbal’bcﬁuv,,(y) + 16,0, V*(y) (2.44)
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This is still not the final form because the third term can be rewritten and its one part
will cancel the fourth term

w“ai,sbéebgybcauvu(y) = i5bd9dﬁbégubéayabauvu(?/) = —wdg“ab(}l’ bdauVy(y)
= —i0,0,V*(y) — 20", 90,40,V, () (2.45)

where we have used the relation (A.10). In an analogous way one can calculate the expan-
sion of the superfield W

Waly) = —iXa(y) +0.D(y) = (6"0)aViur (y) = (00)(" DA (y))a
Wea(z) = Hida(z) +0aD(2) + eai)(6"”6_?)bVW(z) — (00)(9,\(2)0™)q (2.46)

where V,, = 9,V, — 0,V,, is the field strength tensor we are used to from the Standard
Model.

2.5 Supersymmetric lagrangian - the abelian case

The most general and renormalizable lagrangian that includes chiral as well as vector
superfields is

L =% + L (2.47)
where
Ly = B0, +[(1m~»q>-q>-+1b--q>-q>-q> +a®)| +he]  (248)
P i 1 9000 22]2] 3Z]kljk‘ kY AP -C. .
1 .
L = Z(Wawa’99+WaWa’§g) (2.49)

The constants m;j, b;;;, are symmetric in their indices. Since W, is chiral, W*W, is a scalar
field and therefore the #0-component is of interest in our construction as this component
transforms into a derivative. Expansion of the supersymmetric invariant lagrangian density
Zp to components yields

Ly = ihi()d"Oubi(x) — ¢f (£)0,0" di(x) + F} (x) Fy(x)
+ [mik¢k(x)Fk(x) + bijrdi(w)dj () Fr.(x)

- %mij%@)?/)j(iﬂ) — bijri(w)Yj(x)or(z) + i Fi(w) + h-C«} (2.50)

When deriving the lagrangian density £ one needs to use identities (A.1), (A.5) and
(A.9). With their help we obtain

_ 1 ;

W W[, = D(@) +20M@)0" D) = 5 Vi)V () - %a”””"VWVW (2.51)
. _ 1 ;

WaW?| = D) = 2i0,\(2)0" ) = 5Viu @)V () + isﬂ”fwvvaa (2.52)

Then the supersymmetric and gauge invariant hermitian lagrangian density 2y is given

by )
—Vu () VI (x) (2.53)

- 1
Ly = iNx)a" I\ (z) + 5D%c) -
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Here we can summarize what our lagrangian .# describes. In %p we have got a kinetic
term for the fermion ¢ as well as for the sfermion ¢. We have also got an interaction
between this two fields. £y contains kinetic term for the gaugino A as well as for the
vector particle V. Here is the proper time to remark that the kinetic term for ¢ (}) is a
part of the Dirac equation (Majorana equation) with the sign as in the book of Peskin,
Schroeder [8]. This was one of our goals and we also remark that this sign was the reason
why we have chosen the action from the right at the very beginning (see (2.3)).

The fields F, D are auxiliary fields and can be replaced by considering the Euler-
Lagrange equation which further leads to new interaction terms.

The whole lagrangian does not describe the interaction of matter particles (¢, ) with
gauge particles (V; ). This interaction will occur when we consider the non-abelian case.



Chapter 3

Supersymmetric non-abelian gauge
theories

3.1 The most general lagrangian

In this chapter we will discuss the gauge invariant interactions of chiral and vector super-
fields.

Let G be a compact gauge group with Lie algebra G. Under a local gauge transformation
the left and right handed chiral superfields change to

P! = e~i20iM) g, (@) = dfei20iA (@) (3.1)

where A is a matrix

Ayj =TS A (3.2)

and the superfields A(® satisfy the chirality condition (2.11) so that transformed ® remains
chiral.

The matrices T(®) are the hermitian generators of the gauge group in the particular repre-
sentation that is defined by the chiral field ®. In the adjoint representation we normalize
the generators as follows

Te(TWT®)) = ko, k>0 (3.3)
and the commutator of the generators is
[T, T®)] = jgabep(©) (3.4)

tabc

where are the structure constants of the gauge group G.

The kinetic term ®'® in the lagrangian (2.48) is not invariant under the local gauge
transformation. We are forced to introduce the vector superfield V provided also that we
extent the transformation law (2.37)

e20:V'(z) _ e—iQQiAT(x)GQQiV(J»‘)ei?giA(w) (3.5)

12
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where the superfield V' is a matrix as well
Vij = V@l (3.6)

With this addition, the lagrangian £, is

fé) = (I)Iezgiv(bi

1 1
0050 + |:(§m”q)l@] + gbUk(I)Z(I)J(I)k + CZCI)Z)

¥ h.c.] (3.7)

To obtain gauge invariant theory we also have to satisfy the demands of the following
relations

CiZO if gl-yéO
mi; =0 if gi+g; #0

We are also forced to generalize the prescription for the field strength superfields

1_

W, = —ZDDe_29VDae29V (3.9)
1 29V'\ —2gV

W, = —ZDD<Daeg Je (3.10)

Under the gauge transformation the W,, W, transform in the following way
W! = e 290,200 (3.11)
W, = e 200y, ei20At (3.12)
Here we explicitly show the gauge transformation of W,
Wé ~ DD[DU.L(efz‘QgAJr e2gV6i29A)]67i2gA€72gV6i29AT —
_ DD[Dd(efiQQAJfeZgV)]ef2gVei29AJf _

_ DD(Dde—ﬂgAT)eﬂgAT + DDe—ngAT(Ddngv)e—2gvez‘2gAT (3.13)

The second term gives the required result while the first term equals zero

.D.D(DaeingAT )GZQQAT — .D_D(Dal) - DD[eszgAT Dael'QgAT]
— _671'2‘91‘\'r Da{Da’ Da}eZQQAT
= —e Mgt PDePN = 0 (3.14)

Now we are ready to write down the full supersymmetric and local gauge invariant lagragian
that describes renormalizable interaction of scalar, spinor and vector fields

LTr(W“Wa

= T6h? )+ @TGQQV@‘ 4 (W +he) (3.15)

00 0066

99+WaW

where W is called the superpotential and represents the products of chiral superfields.
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3.2 Component expansion of the lagrangian

Our task now is to expand the lagrangian (3.15) into the components. At the end of the
long journey we would like to recognize for instance the Dirac equation for the Dirac bi-
spinor which will appear from the combination of the two Weyl spinors ¢ as well as the
Majorana equation for gaugino A, then we will obtain kinetic term for the sfermion ¢ and
for vector particle V# and finally, we will get the interaction of the vector, fermion and
sfermion fields.

3.2.1 The term containing superfields ®, &'

Here we write again the expansion of the left and right handed superfield as well as the
expansion of e29V (@)

O(x1,0,0) = o(x) + V200(x) + 00F (z) — id, ¢ ()00

1 0 1 - (o
t 5 (00)0,9 ()"0 — 7(66)(66)0.0"b(x) (3.16)
ot (2", 0,0) = *( )+ V203)(x) + 00F* (z) + i0,¢" (x)0"0
1 aYa) *
- 5(00)00“%1#(96) — 4(00)(86)8,0"¢" () (3.17)
e29V@) = 1429V +20°V2 =1+ 29(050) V() + i29(00)0A ()
— i29(00)0\(x) + (00)(90) (9D (x) + *V"(x)Viu(x)) (3.18)

Now we need to make a product of these three long expressions. Part of this product has
been already counted when we have dealt with the ®®T (see first three terms in (2.50)).
We also mention that now we cannot forget that V is a matrix and ‘I>;-r,<I>j, (i,j =1
for U(1),i,7 = 1,2 for SU(2), 4,5 = 1,2,3 for SU(3)) is a line, respectively a column.
The remaining terms are

V2002900V TOVRO) | = —gT VO Wiaty)  (3.19)
10,07 (00"0)29(00" )V OTM 65| = igTVD (0 67)6, (3.20)
0729(00"0)V T (—i)0,05(0570)| = —igTViVei(0"e;)  (3.21)
\/§<51;i>¢29(99><5;<a>)T@(p,m - WO (322)

01 (=i20)(00) ONNTV2(005)| 0 = V2T TN Dy)  (3.23)
g (T<a>T<b>)ijv,§a ViOgrg, 4+ ¢TI D@erg; (3.24)

The resulting terms agrees with the terms published in the work of Haber and Kane [9] in
appendix B, equation (B2).
3.2.2 The term containing field strength suprefields W,, W,

The superfield W, (y) consists of the terms appearing in relation (2.46) multiplied by the
factor 2¢g and of the addtional terms that arise because of the additional terms in the
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definition (3.9). So now the superfield W, that is now a matrix consists of the following
components

Wa(y) = —i2g)\a(y) +290,D(y) — 29(00) Vi (y) — 29(00) (0" 0N Y))a
+ 90.Vu(y) OVE O ()T @OTO) —i2g0m 20,V (y) VO (y) T T

T+ ig(0)o™ N @ (VO () [T, TO)] (3.25)
Yet we need to calculate the Lorentz scalar term W%W,. The semi-result is

W“Wa(x)’% = idg? (AW gh A0 (T 4 Tha)
+ 4g*(\@ Jﬂj\(b))Vu(C) (Ta[b,c] + T[b,c]a)
— Gy — Iyt + i) VOV T
+ ,L-293 (nupnua o nuanup + ’L'€MVPJ)VM(S)VJ([))VI)(C) (Tabc + Tbca)
- 494(77W)77VU - ’I’}MJ’I’}W) + ,L-sul/pa)vpga) Vy(b) VU(C)Vp(d)Tade
+ 4¢?D@pOITab (3.26)

where 7% = 7@ ®) b — 7O _ TET0) ete,

From the W,W¢ 4 e would obtain a similar result. The only difference would be the
opposite signs standing by the terms containing ie**??. Therefore these terms will not be
present in our final lagrangian.

As a last step we would like to make a trace. Before doing so we have to slightly modify
the last expression with the help of following equations

(ntPnr? — nuanw)vu(g) Vg(b) Vp(C)TOLbC — (VM(I‘,‘)V”(I’) yule) _ fog) 1 (b) VV(C))Tabc
— (Vu(ﬁ)V”(b) Ve palby (3.27)

(n,upnua o nuanup)vu(a)vy(b) VJ(C)Vp(d)Tade _
— (Vu(a) VO yrieyud) _ VH(“) VO yue)yvid)ypabed —Vu(a)V,,(b) Ve yvid)ypabled
= _%(Vu(a) VO yreyvd) oyl Vu(b)V”(C)V“(d))T“b[C’d]

_ _%Vu(a) VO e (@) pabled) . phaldely _ 1

5 Vu(a) y O yueyrdplatlled s og)

Now everything is prepared for writing down the final lagrangian.

3.2.3 The final lagrangian written in component fields

The component expansion of the supersymmetric and gauge invariant lagrangian for a
renormalizable nonabelian theory is

- 1 1 -
¥ — ’L')\(a)O'M@M)\(a) . ZFL(U%)F(G) woy 5D(a)D(a) + i(¢if3u@;ﬂpi) + F'F,

+ (Zudi) (2") + V2T (97 A Dy) — NGy g5] + gDOT pr g5 (3.29)
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where the covariant derivatives and the non-abelian field strength tensor are
_@uj\(a) - aﬂj\(a) _ gfabcvu(b)j\(C)
FIS(;) _ aMVV(a) - ayvpga) o gfabcvpgb) VV(C)

@;ﬂp = au¢+igvu¢
Db = Qb +igVyd (3.30)

3.3 Implementing G = U(1)y ® SU(2); ® SU(3)c group

Generators of the Lie algebra G are

a

Y ‘ A
T=20lel+lesol+loles (3.31)

We remark that the three parts of the generator T' commutes among themselves.

The matrix vector superfield consists of the following three parts
29V — 2¢'V' 4+ 29V 4 2¢,V (3.32)

Now the (66)(#)-component from the component expansion of ®fe2d'V T2V +20:V" ¢ wil]
lead to the same terms as in equations (3.19) - (3.24) but with gV}, replaced by ¢'V; +
ngf + g5V, This leads to the covariant derivatives of the fields ¢, given by

1 1 294 1 aysa
Db = O +ig YV +igsT Vuw—i-zgsg)\ Vi

2 2
1 1 i/t 1 aysa
Dy = 8“¢+zg'§YV/i¢+zg§T VM¢+zgs§)\ Vi (3.33)

The term e~V Dye" can be schematically written as

e*(V1+V2+V3)Dae(V1+V2+V3) (3.34)
This expression will fall to three pieces because the V; commutes with V; (i # j) and
because the function e’ contains only terms with even number of Grassman variables

which enable us to use the standard Leibnitz rule when making derivation of products of
functions. Finally we are left with three identical terms in the lagrangian, one for each

group
o1 1
iNo* DN — T, F' 4 oD
4 1 1 . .
iNG DN — ZF, F' " 4 S DD’
1 1
NG DA — L F, FOM 4 5 DD (3.35)

where each group has its own covariant derivative.



Chapter 4

MSSM theory

4.1 Lagrangian of the MSSM

In the previous chapter we have derived the supersymmetric lagrangian for general scalar,
spinor and vector fields. In this chapter we will put the fields that are already known
together with their predicted superpartners and suggested two Higgs doublets with their
superpartners into the theory. At the end we will derive the couplings that are important
by counting the width for the neutralino decay including only QCD corrections.

The MSSM field content is summarized in the following table (Tab. 4.1).

Superfield Particle Spin | SU(3), ® SU(2),, ® U(1), Superpartner Spin
Vi B, 1 (1,1, 0) B 1
Vs W 1 (1, 3, 0) Wi 1
Vs G 1 (8,1,0) 7 2
Q Q = (ur,dr) : (3,2,3) Q = (iig,dr) 0
Ue U =g 1 (3*,1,-4) Ue = i, 0
D¢ D¢ =dp l (3*,1,2) D¢ = dj 0
L L= (vp,er) : (1,2, -1) L= (ip,ér) 0
E* E°=ép 1 (1,1, 2) E¢ = ¢ 0
b2 Hy=(H},H) 0 (1,2,-1) Hy=(H},Hy) 3
Hy | Hy=(HS HY) 0 (1,2, 1) Hy=(HF H)) 3

Table 4.1: Particle content of the MSSM.

The names for the new fields are as follows. The superpartners to gauge bosons B, Wﬁ, Gy,
are called gauginos and carry the spin % Gluinos are fermionic superpartners to gluons,

17
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the other gauginos combine to form photino, Z-ino and the W-inos. Superpartners are
denoted by tilde.

The second thing we want to mention in connection with the table is the bar upon the
term eg, dr,ur. This bar indicates that we will substitute the Weyl fermion with undotted
indices into the lagrangian. In the appendix we can see that the right-handed part of the
Dirac spinor g is in fact the dotted spinor.

Finally, in supersymmetric theories one needs two complex Higgs doublets to give mass to
both the up-type and down-type fermions. This is because the superpotential must consist
of the combinations of chiral superfields that are chiral. We cannot simply use the complex
conjugate of the Higgs doublet as in the Standard Model otherwise the 60-component of
superpotential would not transform into a total divergence.

The lagrangian of the MSSM can be written in the following way [10]
LissM = Liinetic — Vv — Vi — Vb = Vi + Lot (4.1)

where the Zinetic contains the standard kinetic terms including gauge interactions with
the gauge bosons. The terms Vy, Vi, Vp, Viz Wi stand for all interaction that are allowed in
the supersymmetric theory and the Z.p includes the soft supersymmetry breaking terms.

Superpotential
W = —&ij |he LV E° + haHIQI D° + by HJQ'U® — pH{HS| + h.c. (4.2)
The ¢;; tensor is still the same tensor we use from the beginning, that is, e120 = —1. By

writing the superpotential we have suppressed possible generation indices on superfields.
The superpotential give rise to two kind of interactions described by the Yukawa potential
Vy and the so-called F-term potential Vg (see equations (2.28) and (2.29)).

The Yukawa potential

The Yukawa potential is obtained by substituting two of the superfields by their fermionic
content and the remaining superfield (if something remains) by its scalar content. The
result is

Vv = —ei|heH{LIE® + haH{Q'D* + h, HIQ'U® — pH{H}
— eij|heH{LI B° + hg HIQI D° + hy QU]
— ey H{L B + hgH{Q D + by HEQ'U°] + hic. (4.3)
The F-term potential

The F-term potential arises after using the Lagrange-Euler equations of motion for the
auxiliary field F' and substituting them back into the lagrangian. We will demonstrate this
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later when discussing the particle spectrum of the MSSM theory. The F-term superpoten-
tial is then given by

oW (¢) |
Vo=

where ¢; are the scalar components of the superfields.

(4.4)

The D-term potential

This potential comes, analogously as in the case of F-term potential, from eliminating
the auxiliary field D using equation of motion and substituting back into the lagrangian.
The D-term potential is given by

1 a a
VD:EZD D (4.5)

a
where

D = —g T o; (4.6)

174

!/

The ¢; are the scalar components of the superfields and the 7@ ((a) < ’,i,a) are the

generators of the particular gauge symmetry.
The Vg Wi potential

This potential comes from the equations (3.22) and (3.23). It represents an interaction
of gauginos.

Vays = V29T (N9 65 — iv/2g TS 1 (A D)) (4.7)

where ¢, 1) are the scalar, resp. fermionic components of the chiral superfield and A\(@) is
the gaugino field.

The last term in the full MSSM-lagrangian includes soft supersymmetric breaking terms.
The word soft means that we do not consider any dimensionless SUSY-breaking couplings.

o . 1 |
ot = iy, [HI* iy, | Hol* —miyes; (HUHS + H{'HYY) + 5mg"g® + 5 MWW

2
1. 5= - - = = -
+ M'BB + Mgl + Mg |ag[* + Mp|dg|* + ME|IL|* + ME|eq|”
— eij (he AcHILE® + haAgH{Q D° + hy A HLQ'TU® + hc.) (4.8)
where we have introduced the SUSY-breaking mass parameters m%l,m%{Q,m%Q,mg,M ,
M, M%, Mg, M]%, M%, M% as well as the SUSY-breaking trilinear scalar couplings A., Ay,
Ay

4.2 Particle spectrum of the MSSM

4.2.1 Higgs sector

The MSSM theory needs two Higgs doublets. Their hypercharges are: Yy, = —1,Yy, = 1.
The doublet Hs is responsible for masses of the up-type fermions and the doublet Hy for
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masses of the down-type fermions.

The potential for the Higgs field after expanding the lagrangian is
V= mi|H|? + m3|Ha|? — m3ye,;(HLHS + HI'HJ)

1 1
+ g0+ gL — [Ha')? + S [ H Ho (4.9)

where mi , = m%{m + | uf?.

Now we will show the derivation of the terms containing the constant . The relevant
terms are
W o eju(H{Fl, + Fjy H}) +hc. =
= —pH{Fyy + pHy Fys — pFpoHy + pFy - HY

2

After using the Euler-Lagrange equation of motion for FH;,F - we get
1
Fp- = —pHS +..., Fy- = —prH T+ ... (4.11)

The dots indicate that the previous two equations are incomplete. There is another term
in the superpotential that contains the F, - field as well as the fields associated with the
1

electron and therefore has no contribution to the Higgs potential.
Substituting back we obtain the following term to ‘ZAssm

~Fy-Fj- = — | HS? + . (4.12)

Analogously we obtain another terms —|u|?|HS|?, —|u?|HY|? and — |u|?|Hy |*.

Next we will derive the terms containing the gauge couplings g,¢’. The relevant terms
that come from the final lagrangian (3.29) are:

1 1 Y Y
5P8DE + 5 DwiDyi + g'Dp(H)); <—> (H1)» + ¢'Dp(Ha)}, <—> (Hz)p
ab ab

2 2
i i
+9>  Dyi(Hy); (5> (H1)p +9 Y Dywi(Hs);, <§> (Hz)p (4.13)
) ab i ab
The E-L equation of motion for the field Dp is
g/
Dy = S~ 1) + .. (1.14)

And after substituting back to final lagrangian we obtain the following term to “Zssm

1 1
_EDBDB = _ggl2(’Hl‘2 — ‘H2‘2)2 + ... (415)
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The E-L equation of motion for the field Dy has the following form

7 7_1

* T *
Dyyi = —g <(H1)a <5> (o + (H3)a () (Hz),,> - (4.16)
ab ab
And after substituting back to final lagrangian we obtain the following term to “Zssm
L pwiDyi = —rEtm? - Le(m e - )y 417
3D D = — I HI L = S (HJ? — [P 4. (417)
where we have used the identity Zz(%)ab(%)cd = %((deébc — %6ab60d)

Both neutral Higgs boson fields acquire a non-vanishing vacuum expectation value (VEV)
L 0

(Hi)=| v2 |, (Hz) = | vy (4.18)
0 V2

We will parametrize the doublets in the following way

m(B)o ()

o= ) = 21 Yo, = +1 (4.20)
3 (v2+ @3 +ix3)/V2 )’ :

The gauge bosons are made massive after electro-weak symmetry breaking. Because their
masses are functions of vy, ve, their experimentally measured values can fix one of the VEVs
as can be seen from relations

92 + 9/2 92

mQZ = 1 (v% + v%), m2W = (vf + v%) (4.21)
4m>
2 _ /2 2 4 2
v* = (v] +v5) = =—2—= ~ (246GeV 4.22
( 1 2) 92 +g,2 ( ) ( )

The other VEV remains a free parameter of the theory. Conventionally, people do not
work with this parameter but introduce the angle 3 which is defined as

tan 8= 2 >0, 0<p<Z (4.23)
U1 2
However, tan 3 is not entirely a free parameter. The conditions for the minimum of the
Higgs potential
ov
oy}

oV

(HY)=vn

(HY)=vn

restrict the parameters tan g3, m%l,m%b, |1|? and m?2, by the following equations

1
m? = —mi,tanf — §m2zcos 243 (4.25)

1
m3 = —m2,cot 3 + §mQZCOS 20 (4.26)
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The Higgs mass matrix can generally be written as

M.Q.’Higgs o 1 82 Vv

g ~ 20H,0H, (4.27)

(Hp)=vn

This mass matrix has the block-diagonal form. The particular 2 x 2 blocks can separately

be diagonalized as
HO cosa  sina oy
( R ) N ( —sina cosa ) ( o (4.28)
G° —cosf3  sinf3 XY
( A0 ) N ( sinG  cosf x5 (4.29)
G* —cosf sinf3 gb;—L
( H* ) - < sin cosf3 o5 (4.30)
The G°, G* are massless Goldstone bosons, H?, h?, A are three neutral Higgs bosons,
and H* are two charged Higgs bosons. The three free parameters of the Higgs sector are

conventionally chosen to be
mao, tan 3, p (4.31)

The other parameters of the Higgs sector expressed with the help of these three parameters
are

1
mioﬂ0 = 3 lmio +m% F \/(mio + m%)? — 4m?,m%cos? 3 (4.32)
mis = mio+miy (4.33)
Mo +m
tan 2 = tan 20 ‘240 2Z (4.34)
A0 — Mgz

4.2.2 The SM fermions

Our aim is to obtain the Dirac lagrangian for fermions known from the Standard Model.
As an example we will derive the desired lagrangian for electrons. There are two superfields
at our disposal, superfield L and the superfield FE°. When we substitute their fermionic
content (er,ér - both are Weyl spinors with undotted indices) into the final lagrangian
(3.29) instead of 1 we obtain the following two terms

iéLW‘@MeL + ’iéRﬁu.@MéR = ’iéL5M.@M€L + ’iéRUM.@MeR (4.35)

which is the massless part of the Dirac equation that agrees with the Peskin-Schroeder
notation. The mass term of the electron appears after the Higgs bosons get their VEVs

L - —Vy — €ijheH{LjEc + h.c. = _he%(eLéR + éLeR) (4.36)

The mass term is of correct sign provided that the constants h., v are positive.
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4.2.3 Gauginos

In this subsection we will treat as an example the gluinos case. Our aim is to check if
the terms containing gluinos in our lagrangian agree with the terms given by Majorana
lagrangain. We said Majorana because there are no two superfields as was the case of the
electrons. We remark that gauge bosons are themselves antiparticles and the same applies
for their superpartners - gauginos. The gluino written as a Majorana spinor is

o [ =N B
g _< a ) a=1,2...8 (4.37)

Then the Majorana lagrangian yields

7

.,%M:2

=a ~ 1 =a~q ‘\a ya 1 aya yaya
g Y Du9" — 3Mmgg 9" = iN' T DA\ + §m§()\ A%+ AN (4.38)

The first term agrees with the first term in the final lagrangian (3.29). The second term
agrees with the soft breaking term in the L.

4.2.4 Neutralino sector

The fermionic superpartners of the gauge bosons (gauginos) and the superpartners of the
Higgs bosons (higgsinos) mix to form mass eigenstates called neutralinos (particles with
zero charge) and charginos (charged particles).
In the interaction base on can combine the four neutral Weyl states as

) = (B, WY, 1Y, ) (4.39)
where the B, W30 « —iX. The mass lagrangian written in terms of the vector ¥ is

= —%(W)TWO +he. (4.40)

where the neutralino mass matrix Y is

M’ 0 —myswecos  mysysin [
v 0 M mygcwcosB  —mygewsin (4.41)
—mygswcos3  mygepcos 0 —
myswsinf  —mgcysin 3 — i 0

The letter W stands for the Weinberg angle and the sy, ¢y are short forms of the sine
and cosine of this angle. We now get little back and expand the lagrangian (4.40). Its
expanded form yields following terms

(I Vo7
L = —5M'BB— S MWW + pHYHS — mz eweos SWHHT

+ myewsin fWIHS + my sycos f BHY — my sysin 3 BHY (4.42)
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The first two are from %, the third comes from the Yukawa potential V3 and the rest
come from the potential Vi W where for example

o i 1 70, Y3 (1 770
XH_V&M : 1\/59/ {ﬁ <—§) )\BH1+E<§) )\BHQ + ...
= —imy swcosﬂ)\éff? +imyz SWsinﬁ)\Bﬁg +... (4.43)

Due to the Majorana nature of the neutralinos, the mass matrix can be diagonalised using
only one rotation matrix Z
-1 .
ZY 7~ = diag (mgo, mgy, mgo, myo), Imgo| < [mgo| < |mgol < |mgol  (4.44)

where we assume that the mixing matrix is real and we also allow the eigenvalues to be
negative.
The 4-component Majorana spinors for the neutralino fields can be constructed as

Xi = Zij < ﬁ] ) (4.45)
j

4.2.5 Chargino sector

The superpartners of the charged gauge bosons and charged Higgs bosons mix to create
charginos. In the Weyl representation we have

ot = (W, HY) ¢~ = (W™, Hy) (4.46)

where W+ = (W' £ W?2) and W¥* « —iA*. The mass lagrangian in this basis is

o
1. (0 XT Pt
et (2 T3 ) i
where the chargino mass matrix is

_ M V2myysin 8
X = < VZmycos 8 i ) (4.48)

This matrix can be diagonalized by using two unitary matrices U and V.
-1 .
UXV™" =diag (mxli,mxgc), \mxit] < \mxgt] (4.49)

We use a convention in which the matrices U,V are real. It implies that the eigenvalues
can be negative. The Dirac spinor is constructed as

= Vij@) 4.50
X; —<Uij¢j (4.50)

The mass eigenvalues are given by

1 .
m?(i =3 [MQ + 1 4 2mi, F \/(M2 + 2+ 2m3, )2 — 4(mfysin26 — ,uM)Q} (4.51)
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4.2.6 Sfermion sector

The sfermion mass matrix has its origin in the F-term, D-term potentials, SUSY breaking
potential and in the trilinear couplings where the neutral Higgs fields get their VEVs. As
an example we will derive the mass matrix for selectrons. Finally we will write down the
general mass matrix for all sfermions, squarks including.

The terms that contribute to the selectron mass matrix are

ggoft|mass terms - _‘]\4%|Z~L|2 - M%|éR|2 (452)
s~ e o~ /U JU
Lot iril. coup. : €ijhe AcHILIEC + h.c = —heAe\/—%eLe s+ he (4.53)
F — term: — e (he Hi LV E¢ — uH{ H}) (4.54)
1)2 V2
—|he|*2(ler)? 5+ hepr—=€rE5 + h. 4.55
= —lhel” 5 (lez]” + ler[”) + et 5Ll +he (4.55)
1 [ . . 2
D — term: — 2g” | Liri Lo+ (H)omiy (o + (Ho)srip(Ho)y + - |
1 2 ~% ~ ’U% ’U% 2
—>—§g{—eLeL+E—E+...} (4.56)
1 2
—g¢" (eLYer +epYeq + HY "V H) + HY *YHY + .. |
L ) _ o v v 2
—>—§g [—]eL] + 2|ég| —74‘74—...} (4.57)

We suppose that the parameters u, he are real. Now it is not complicated to make up the
selectron mass matrix with the help of previous equations. However, we will not do that
but write down the general form for the sfermion mass matrix instead and the agreement
in the selectron case can be easily verified

M2 = ( ;;ffrff aTJ; 57 ) (4.58)
Ir
where
m?;L = M{QQL} + (I}H’ — efs%v)cos 2ﬁm22 + m?f (4.59)
mf;R = M{20,D,E} + efs%,vcos 26m7, + m?c (4.60)
ap = Af— u(tanﬂ)fﬂ?L (4.61)

The term I?L denotes the third component of the weak isospin of the fermion, ey denotes
the electric charge in terms of the elementary charge e. The other terms were presented
earlier.

We have to diagonalize the matrix in order to obtain the mass eigenstates. We intro-
duce the mixing angle 6 I The diagonalization proceeds as follows

m%  arm ~t [ m2 0 z

M2 — o ) ) 2 () i) (RY) (4.62)

! agpmy m 0 m
Ir f2
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where _
(Rf) :< CO'SHJ; sm@{; ) (4.63)

—5111«9/; COSHf

The relation between the mass eigenstates fl and the interaction eigenstates fa is

A T B U R N [/ P G R N o
(B ) = (f)=mlh = ()= (B) = RLd o

The mass eigenvalues and the mixing angle are

1
2 — Z(m2 2 2 .2 )2 2.2
Mfo 2 (me T me, F \/(me mfR) + 4afmf) (4.65)
COS 0f~ = . —Qfmy = (0 < Hf < 71') (466)
\/(me N mf1) +aj My

4.3 Couplings important for the neutralino decay

4.3.1 Neutralino-Fermion-Sfermion couplings

The relevant lagrangian comes from the two potentials, the Yukawa potential V3 and the
potential Viz, . Here are as an example two terms that arise from this potentials for the
case of sbottom and bottom quark

L o Vi = H B+ .. = —Xeh Zig R PLOD; + ..
- Y. B . .
L _VGW : —\/§g'BbL§bL +...= —ﬁgtan@wb(eb — Ig’L)RZflPR)ngZ- (4.67)

For the neutralino-fermion-sfermion couplings the whole lagrangian reads

— r3 r - ~ :0 r r ~*
& = —f(al,Pr + b} PL) X0 — X0 (ol Po + b Pr) £ F; (4.68)
where . .
aly, = hy Zy R}y + gkaRzl’ b{k = hyZke R + 9y R (4.69)
fho=V2((ey — BN tanbw Zin + 1 Zs), [l = —V2estan by Zp (4.70)
where x takes the values {3, 4} for {down, up} - type case, respectively
o fi /
/
i
/ ~
f (fPL+b ) fz e — — (fPR+b )
-0 =0

Xk Xk
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4.3.2 Gluon-Fermion-Fermion coupling
The relevant lagrangian for the gluon - quark coupling is
L = —gsTqGas7" at (4.71)

Gs
G —igs T

qt

4.3.3 Gluon-Sfermion-Sfermion coupling

The lagrangian for the gluon - quark coupling comes from the term (@M@-)T(.@“@-)

L = —ig,GOTSG! 0" Gi (4.72)

where the 9 is defined by: A" B = A(0"B) — (0FA)B

7 q~i,s
/ .
G*" ~ooo0000X —igsT(p1 + p2)dij
AN

7R
The interaction of the squark with the gluon does not include mixing of the scalar particles.

4.3.4 Gluino-Fermion-Sfermion coupling

The lagrangian for this coupling comes from the term —Vg Wi

L = V20, T4(@Pri"dre — GsPLi"dre) + (7" Prady s — §" Pradp,,)]
= —V29,T[as (Rl Pr — RlgPr)§%Gis + §°(Rip P — RigPR)a:d;,  (4.73)

The relative minus sign comes from the fact that the field ¢r belongs to conjugate repre-
sentation, that means, is SU(3) antitriplet.

7/ Qis
/
i
/

@ —\/2igsT%(RY, P, — RY,Pg)
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gs
Git —————— —/2igs T (RZLPR R?RPL)

~a

9

The arrow on the gluino line indicates whether the gluino participates on the vertex as §”
(out) or as g* (in).

4.3.5 Four Sfermions coupling

In this subsection we will focus on the coupling that contains the strong coupling constant
gs. It suffices then to consider only the D-term potential with

D = g, (t”;sT;';EL,t + 07 T4br e — Trs TS Ty — BR,ST;;*BRt) (4.74)

The minus sign appears because the superfields U,D belong to conjugate representation
3 and therefore transform with —7T%*. We remark that we now consider only the third
generation of quarks.

When we define the following matrix

o _ papa _ papa _ [ €0820g  —sin20g,
Ay = Fa By 27z < —sin20;, —cos20,, (4.75)
the D® can be written in a more compact way

D - gSTst Z Awé?:é?t (476)

a=1,2

where o = (1,2) corresponds to (Stopsector, Sbottomsector).

The relevant lagrangian for the four sfermions coupling has then the following form

L = __gsTaTa Z A Aglq?:q?sqktqlu (477)
a,f=1,2
(jffr N s qift
N 7
A x
N 7/
N
hid —ig? (T TR AL AL, + 00pTE, TLAG A, )
7/ AN
P ~
Ve N
o s N
q?fs qlu

where we sum over the index a but not over the index a.



Chapter 5

Renormalization of the MSSM

5.1 Dimensional regularization and reduction

When we want to calculate processes in Quantum field theory at higher than tree level we
usually encounter divergencies. Then it is inevitable to regularise the divergent parts and
after the renormalization of the theory the formal infinite parts are subtracted.

There are two types of divergencies. The first one is called an infrared divergence (IR). It
arises as soon as the massless particle appears in the loop. In this work it will be gluon.
The way how to tackle the problem is to introduce a small nonzero gluon mass. Then after
calculating additional graphs that represent the radiation of the real gluon the final result
will be independent from gluon mass and therefore IR convergent.

The second type of divergence is called ultraviolet (UV). It is caused by the divergent
behaviour of the loop integrals as the integration variable approaches infinity. The sim-
plest way how to get rid of the infinity provides the so-called cut-off scheme. This method
introduces a cut A on the energy. With this technique are the Feynman amplitudes finite
but the theory looses its Poincaré invariance. Better way was introduced by 't Hooft and
Veltman [11]. They realized that by lowering the dimension of an initially divergent in-
tegral it can be made finite. We called this method dimensional regularization (DREG).
Everything is calculated in D-dimensional space where D = 4 — 2¢ is a complex number.
Consequently, the divergent parts arises as a pole of the dimensional parameter D at ¢ = 0.
The whole procedure is described in [11], [12], [13].

A general one loop integral can be written as
(2mp)*P
T s (P1s e DN—1, M0, oMy —1) = i

/qu Quy - Quns (5.1)
lq% — mi +iel[(q + p1)? — mF +iel...[(¢ + pnv—1)? — m}_, +ie]

where the convention for the momenta are shown in the following picture. The parameter
u serves for retaining the initial dimensionality of the integral.

29



5. Renormalization of the MSSM 30

P2 —p1

According to the number of particles in a loop we differentiate the integrals of type A,
B, C, D and higher. The first three scalar integrals are denoted as

' = Ag(md) (5.2)
T2 = B()(p%, m(2)7 m%)
T3 = CO(p%v(pl _p2)27p%7m%7m%7m%)

The other tensor integrals B*, B* CH, CH* etc. can be calculated from the scalar ones
trough the procedure called tensor reduction. We refer to [14]. The divergence is contained
in the parameter A which is defined as

1
A==-—~vg+Indr (5.5)
€
where vg = 0.57721 is the known Euler-Mascheroni constant. The UV-divergent parts of

the loop integrals are listed in the following Table 5.1. We remark that only incomplete
(but sufficient for our calculations) set is presented.

Integral UV divergent part
Ag(m?) — m2A
By — A
By — —%A
Boo(k*,md,m?) — —3(k*/3—m3—m})A
B — %A
Coo — %A

Table 5.1: UV divergent coefficients of the Passarino-Veltman integrals

The IR divergent parts are shown in the Table 5.2. The new parameters presented there
are

o ﬁ(mg,m%,mg): )\(m%,m%,m%) (5.6)

m%—m%—m%—l—ﬁ

Bo (5.7)

2m1m2
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Integral IR divergent part
. . 2
Bo(m?, 22, m?) = By(m?,m?,\?) — —12%\2
Bi(m?,m?,\?) — 12%‘22
Bi(m?,\2,m?) — 0
Re[Co(m?,m§,m3, \>,m,m3)]  —  —lin)?

Table 5.2: IR divergent coefficients of the Passarino-Veltman integrals

In the Introduction we have mentioned that in supersymmetic models superfields posses
equal number of fermionic and bosonic degrees of freedom. But when we work in DREG
this no more holds. The reason is that the vector fields become D-dimensional and cannot
be combined with its fermionic partner to a superfield. This leads to the need of a new
regularization scheme. Such was introduced by the W.Siegel [15] and is called dimensionaal
reduction (DRED). In this scheme one still calculates the integrals in D dimensions but
the vector fields are kept 4-dimensional. At one loop level when calculating integrals the
difference between DREG and DRED can be seen only in the finite terms.

5.2 Renormalization of fermions

In this section we are going to renormalize wave function of a fermion field as well as mass
of a fermion. We use the multiplicative renormalization where the bare parameters are
split to the renormalized parameters and their counterterms. This scheme is described in
[16]. We will not consider the mixing of the fermions because we will not come across
the situation in calculating neutralino decay which will require the mixing. The bare
parameters go to the following terms

1 1
fo — (14 55ZLPL + 5(SZRPR)f (5.8)
. o1 1
fo — F1+ 562LTPR + §5ZRTPL) (5.9)

mg — m-+dm (5.10)

The parameter m is the renormalized mass and as we know that the bare mass mg is in
fact an infinite parameter it follows that the countertem is as well. The f is the renor-
malized wave function and is connected to the bare one through the relation fy — V/Zf.
The original bare Dirac’s lagrangian splits to the formally identical lagrangian but with
renormalized fields and to the counterterms

folid —m)fo — flig—m)f
+ fp(%azLTPL + %5ZRTPR)f - mf(%(SZLTPR + %5ZRTPL)f
+ fy- m)(%(SZLTPL + %5ZRTPR)]’ —omff (5.11)

We have obtained the additional Feynmam rule for the counterterm vertex which is con-
ventionally denoted by a cross
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1 1
— — iﬂ(%éZ”PL + %5ZRTPR) iy —m)(502" P + 562" Pr)
—im (36211 P + L6Z8TPL) — ism = i 6T (p, p)

The renormalized Green function is connected with the two point function I' through
the following relation

G = iS(p) +i[SMIE*)SP)] + ... = iS(p)[—iliS(p) (5.12)

where only one particle irreducible loop diagrams enter into the series. ﬂ(p2) is the renor-
malized self-energy and iS(p) is the fermionic propagator i(y — m) ™!
amplitude is defined by the following picture

. The renormalized

O - s O
ia(p)L(—p, p)ulp) = ia(p)L'(—p, p)u(p) + ia(p)or (—p, p)u(p)
iu(p)L(—p,p)ulp) = iu(p)(y—m)u(p) + iu(p)I(p*)u(p) = M

The renormalized self-energies f[(pQ) can be further decomposed to the following parts

M(p?) = pPLII*(p%) + PRI (p?) + 1195 (p%) Py + T (p?) P (5.13)

They consist of divergent loop diagrams and the corresponding counterterms as follows
/R = kR g %(6ZL/R + §ZH/7) (5.14)
sL/E — SL/E_ %m(éZL/R + 5ZR/LT) —om (5.15)

To fix the mass-counterterm we use the following on-shell renormalization condition for
the physical mass of the fermion (the physical mass of the particle is taken to be the pole
of the propagator)

Rel(p)u(p) =0 (5.16)

p2=m?2

where Re means taking the real part from the loop integrals only. From the previous
condition we obtain two following relations

1

Pr: mIF 4+ 115F 4 §m(5ZL —0Z%) —ém =0 (5.17)
1

Pp . mIlft 1150 4 §m(6ZR — 672 —sm =0 (5.18)

By summing the two relations and dividing the sum by two we come to the final expression
for the mass countertem

Sm = %ﬁe(an(mZ) + mIf(m?) + T5E (m?) + 195 (m?) ) (5.19)
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The renormalization condition for the wave function (the residuum of the propagator by
¥ = m equals one) reads

1
lim ——Rel'(p)u(p) = u(p) (5.20)
Substituting back for the I' after some small modifications the left hand side becomes

1
P : {HL(m)—I— —ozb 4+ = 5ZLT+ph—>Hrln p(— (TnHL(pQ)+m§5ZLJr

5L (p?) — m%éZRJr — 5m)}u(p) (5.21)

1
Pp [HR(m)Jr ~57% + 5ZRT+ 11m2m(mHR( P?) +my Lz
p2—m? P —

SR (p2) — m%(SZLT —om)|ul)  (5.22)

After substituting (5.17) to the first equation and (5.18) to the second, rewriting (y/—m) !

to ;;:Ln:g and finally using the relation agl(g) = 2—%82(5) we obtain the relations for the

wave function counterterm we were looking for

s7LIR _ R“e{ . HL/R(m2) + ﬁ(HS,L/R(mQ) . HS,R/L(mz))
0 {mz (HL/R(p )+ T )) i m(HS LIR(2) 4 HS,R/L(pQ))}

Op?

- }(5.23)

5.3 Renormalization of scalars

The renormalization of scalars proceeds in an analogous way as in the case of fermions.
But this time we will consider the mixing of the scalars too as we will need it later in our
calculation of the decay. The bare parameters (on the left) consist of the following terms

~ 1 ~
fi — ((SU + §5Zij)fj (5.24)
ey ok 1 *
i = fi(ok + 55 ) (5.25)
m? — m?4 om? (5.26)

The original bare lagrangian consists of the two parts - lagrangian containing renormalized
fields and their masses and the lagrangian containing counterterms

Es r e £k v e 1 * £k r
Oufio" fi—mififi — 0ufF0"fi—mif} fi+ 5(0Zij +025;)(0uf7)(9" ;)
1 I
5 (m30Zij +m30Z5) 7 fi — omisi; £ (5.27)

The renormalized amplitude in the case of sfermions is defined in the following picture
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iLij(p, —p) = i(p*—mi)dy + il = M
The renormalized self-energy consists of divergent loop diagrams and counterterms
. 1 1

The on-shell renormalization conditions for the scalars are as follows

. _ PTef’--(pz)
(2 — e u\g
Rel';;(p”) pm? 0 k2hj2ﬁ o2 1 (5.29)
These conditions restrict the counterterms to be
sm? = Rell;(m?) (5.30)
2 ) .
0Zij = mi —m3 Rellij(mj) — i#] (5:31)
5Zi = —Re-TL(p?) (5.32)
A - € 8p2 2 p p2:m22 N

The wave function and mass of the scalars is not everything what has to be renormalized.
There is another parameter one cannot forget - mixing angle 0 F- The counterterm to the
mixing matrix is set to cancel the anti-hermitian part of the wave function correction

2
-~ 1 -~
OR] = /;1 1 0%k — 0Zi)RL; (5.33)



Chapter 6

The neutralino decay

6.1 Tree level

The Feynnman diagram for the neutralino decay to a fermion and a sfermion is
p1/«// fz

/
/
5(2 @ g @2 (fPR+b )

p3
AN

In this chapter we fix the indices i,k which designate neutralino and sfermion partici-
pated in the process. The amplitude for this decay within a tree level without considering
color of particles is

Mo = —iu(ps) (al P + b Pr ) u(ps) (6.1)

We will count the decay width for unpolarized case therefore we average through neutralino
spin states and sum over fermion spin states

., 1 .
IMo|” = 52/\40/\40

53,52
1 7 7 «f «f
= §Tr{(ﬂ2 + my)(ay, Pr + by, PL) (95 + mgg)(aik Pr +bjj, PR)}
= po-ps(al? + b 2) + mpmgo (bl + aflvh) (6.2)

We stress again that we do not sum over the indices i, k. Finally we come to the tree level
decay width in the CMS system

Ty = / Mo 2de (6.3)

3271'2

35
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where the resulting particles carry the momentum of the absolute value py

\/)\(Tn%(),m2~ m%)

Xp' O fi
= 6.4
Py 2y (6.4)
Mz, y,2) = 2 +y* +2° — 20y — 2yz — 22z (6.5)

6.2 One loop level

To calculate the amplitude at one loop level we must treat the following two diagrams

s s
s s
S/ "
s /!
s

My = + H\

The first diagram leads to vertex corrections, the second diagram includes wave function
and other counterterms. The external fields and their momenta are the same as in the
tree level case. We define new renormalized coefficients A, B and write the one loop level
amplitude in the following manner

My = —iu(p2)(APr + BPr)u(ps) (6.6)

The coefficients A, B further decompose to three parts: vertex corrections, wave function
corrections and conterterm corrections

B = b 4+p® 45 (6.8)

The absolute value of the amplitude to the next to tree level is
IM|2 = Mol +2Re[MiM] + ...
= pops (0 + WhI2) +mymgy (albf; +alivh)
+ 2p2.p3 Re[Aa,{;;k + Bbzf;:] + 2mypmgp Re[Abe,: + aZf,:B] +... (6.9)

Vertex corrections

There are two diagrams that contribute to the vertex corrections

- fi i r
[

~O /

Xk = G +

I

The coefficients a(®),b(*) are (see the appendix B)

a’(v) = (4W)2A£fG()\) mf; ) mf) blf]g) a{ka —Ysy — s, _gs)
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2

+ (4m)? Y AY (mg,mpmy ol bl V20, R, —V20,RY,
j=1
\/§QSR;I-R, _ﬂgsR?L) (6.10)
O = a®(ALC L ALTG Al gafiy (6.11)

The second diagram needed a special treatment. The neutralino is a Majorana fermion
and not only the contractions §§, gg are allowed but also the contractions §j and §g are
possible. The rules for Majorana fermions are described in [17]. According to this text it is
more convenient to transform terms in the corresponding T-product. The second diagram
for vertex correction can be transformed in the following way

STGF [ FT2gf IXTaf f* oo — o JTGf 1§ T foF | fTaxef~ -
where I‘; = CT;C~! = n,T';,C is the charge conjugation operator and 7; = 1 for 1, ~s.

The Dirac spinor and the charge-conjugate Dirac spinor are

3 . .

P(x) = d \/21T > (agus(p)e™P* + bifv® (p)e’®™) (6.12)
d3

wc(x) — 27T \/;TZ zpac bs 5( ) —zpac) (6.13)

And the expression for the propagator of the charge-conjugate fermion field is

(OIT(ff)]0) = COIT(fH)l0) O~ = = iS(=p) (6.14)

Wave function corrections

Two diagrams contribute to the fermion self-energy and three to the sfermion

G /
f g

i i G g _
f f m f/ \\
L . P -— 4+ \ I
Nl AU AU
f f

We have not explicitly showed the indices on sfermions that denote mass eigenstate.

The coefficients a(*), b(*) are (see the appendix B)

B

y 1 2 1 2
o = 5<5ch+2152§fn>a +§Z(5wa +5zgf+z(szfn al,  (6.15)

b = a®(L < Ryaf, o bfkafk = bl (6.16)
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where the arguments that appear in the functions II(p?,...) are
8Zja < (m3, A, ms, —Gs, —Gs, —9ss —Js) )
0Zy5, = M(mi,mj; mg,—V20,Rl V29 R p, V295 Ry, V295 Ry 1)
0Zf - (m%, X, m . —gs, —gs)
628~ Mm% mg,my, V29, Rlp. V29, Rl —V29, Rl V29, Rlp)
5Z]fi" — I1¢..., mi —ggA?nA?”-)

In the topology with sfermion scalar loop we have omitted the possibility of presence of
the other flavor of squark in the loop. This is prohibited because the color factor equals
zero. We also do not need to consider the term A?iAfm in the four sfermions coupling from
the same reason.

Counterterm corrections
1 -~ -~ -~
a© = m_fhfamfzkgRg; + hyZy3dRY, + g ffOR (6.17)

1 ~ ~ ~
b = m—fhfamfzkgRg‘l + hy ZyaSRY + 9y 0 R, (6.18)

6.3 Soft gluon radiation

Having calculated the decay width at one loop level including all the wave function and
counterterm corrections the result is free of UV-divergence. But there is another type of
the divergence - infrared one. This is caused by the appearance of the massless particle
(in our case it is gluon) in the loops. This divergence is compensated when we calculate a
sum of two decay widths the original one and a one with an additional gluon in the final
state carrying infinitely small energy and thus being undetectable. Such gluons are called
soft.

Gluon can be radiated by fermion as well as by the sfermion

/ /
/ L ¥
/ /—%
/
, /" 7o00
k k
/

The amplitude for the first process is

“(p2+k)2—mfc

_ . Wl + _ £*
= U(Fz)(‘@ﬂ”)%% Ao(p2) = u(p2) 931;228

My = u(p)(—igt)e Ao(pz + k)

Ao(p2)  (6.19)
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The A is connected to the process without an additional gluon by the relation

Mo = u(p2) Ao (6.20)
Analogously the amplitude in the case of radiated gluon by sfermion is
p1e*
s = —g, 6.21
M= =g95" - Aop) (6.21)

In both amplitudes we have not included the generator 7. We will count the color factor
in the next section.

The square of the amplitude of radiating gluon in unpolarized case is

_ 2 P5 2pap i
’Msoft‘Q = ‘MO‘Q( 9s) { (pg.k?)2 (D2 k) (p1k) + (p1-k1)2} (6.22)

where the minus sign in (—g?) comes from using the formula

Z&ZA(kJ)sl))(kj) = —Guv (6.23)
A

The result for the soft gluon radiation can be written in the following form [18]

dl dl g2 / 3k
- =—(—=) x = — T 6.24
(dQ>soft <dQ>O (27)3 |k|<AE 2w ( )
where , )
P3 2p2.p1 P
T = - + 6.25
{ (p2-k)*>  (p2-k)(p1k) — (p1-k)? } (6:25)

The integrals needed for the calculation have generally the form

A3k 2a.b
L :/ a (6.26)

F<aB 2w akbk

When a = b the integral equals

4AE2 ag ag — |EI:|
I2=2r¢log— 4+ =1 6.27

@ ”{Og T E % et (6.27)
This integral is divergent after sending the gluon mass A to zero. However, this IR-
divergence cancel with the IR-divergence in the B-integrals presented in the self-energy
diagrams.

The second special case is when @ = —b= I
a.b 1. ap+|p|, 4AE?> . ( 2|p] ) 1, ,ao+|pl
Iy = 2rn———<=1lo lo — L —-1lo
ab (a0+b0)\ﬁ1{2 & a0 —[p] B A Nao+ 0] 1 a5

4 .

1
+ —log
2 " ag— |p] A2 ap + [P ap — |p]
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Divergent parts from this integral cancel with divergent parts in C-integrals in vertex cor-
rections.

It is standard to write the equation (6.24) as

dF) (dF)
il =(—] & 6.29
(dQ soft dY /o ( )
where d, is defined as ,
—g?
58 = W(Ip% - 2Ip2p1 + Ip%) (630)

6.4 Neutralino decay width

The neutralino decay width with corrections to the second power of the coupling g5 is

47p S R .
= oo (CRFO + Cia Mol + CharelMiMu)) (6.31)
i

We have kept postponing the identification of the color factors through the previous sec-
tion. However, it is always useful to think of them at the beginning as some could equal
zero which can simplify the calculation.

The color factor for tree level case is the simplest one. It only declares the fact that
there are three possible color states of the final particles
c% =3 (6.32)
The helpful relation for counting rest color factors is the identity
4

ZTsatTtCL = gésu (6.33)

a,t
The following diagrams include the color of particles. They represent amplitudes in this
order: My, /\/l];, My, My

7/ r / r 7/ r 7 r
/ 4

’ s
v / v /
// u}% // v
w
S S S S

The second color factor C§. is the same for |[M |2, |M lez and M f./\/lj}
MM Ch= > OubuToTyr=> ToTr =4 (6.34)
a,r,s,t,u a,r,s

The last color factor Ct is

Ch= Y 6sbuTiTo, =4 (6.35)

vr sw
a,r,s,v,w
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6.5 Numerical results

In this subsection I present the numerical results for the neutralino decay. There are lots
of new parameters entering the MSSM theory. I set their numerical values at first. I have
chosen for the values given in the MSSM package of the Feynarts program for the most of
them.

The first set of the presented graphs shows the decay widths and masses of the particles
as a function of the parameter p. This parameter is involved in many places: Higgs
potential, neutralino as well as sfermion masses, etc. The parameter tan 3 is set to be 7.
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Figure 6.1: left graph: T'y (GeV) as a function of the parameter u; right graph: mass
(absolute value) spectrum; each color represent the following particle: red - neutralino 1,
green - neutralino 2, blue - neutralino 3, gray - neutralino 4, orange - sbottom 1
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Figure 6.2: left graph: T'y (dashed) and I" (solid) for the neutralino 2; right graph: T’y
(dashed) and T" (solid) for neutralino 4 as a function of the parameter p
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Figure 6.3: The situation as in the Fig.6.2 but with omitting the finite terms coming from
gluon radiation
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In the four upper graphs I let the parameter tan 3 to vary. The parameter pu is set to be
—400.
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Figure 6.4: left graph: T'y (GeV) as a function of the parameter tanf; right graph:
mass (absolute value) spectrum (GeV)
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Figure 6.5: left graph: T'y (dashed) and I" (solid) for the neutralino 2; right graph: I’y
(dashed) and T" (solid) for the neutralino 4 as a function of the parameter tan (3
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Figure 6.6: left graph: I'y (longest dashes), I" with included bremsstrahlung (solid)
and I's with included soft gluon approximation with different values of AE?(AE? =
1,10,100GeV from the bottom curve up) for the neutralino 2 and 4; tan 5 =7

parameter point: M = 300, Mg,sy = 200,4, = A, = Ag = 100, Mz = 787, ma, =
700, m s = 705

From the presented graphs we see that the corrections to the tree level widths are around
30%. From the last two graphs we can see that the soft gluon approximation is better
with increasing gluon energy. But gluon with the energy around 10 GeV can no more be
considered soft.



Conclusion

In my master thesis I derived the lagrangian for the MSSM theory using the formalism
of superspace and superfields. I tried to be as close to the notation that is used at the
Institute for High Energy Physics in Vienna as possible.

I calculated the decay width for the neutralino decay to an antisbottom and a bottom
quark at a one loop level considering only the QCD corrections using Feynman rules com-
ing from the derived lagrangian. I had to consider two loop diagrams contributing to the
vertex corrections and five loop diagrams contributing to the self-energies those generic
form I calculated by hand. I also encountered the problem with an infrared divergence
which I solved by considering a soft gluon radiation.

At the end of my thesis I presented graphs where the decay widths and particle masses
depend on various MSSM parameters.
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Appendix A

Notation, Spinor Algebra and
Grassman numbers

We use the metric 7, = diag(1, -1, -1, —1).

0

The Pauli matrices and the matrix ¢” are defined as

10 01 0 — 1 0
0._ 1. 2._ 3._
(,,_(01) a._(N) _( 0) a._(0_1>

In the Weyl representation, the Dirac matrices 4# are given by

0 o
’LL p—

where ot := (0%,0%) , and 6" := (0, —0)

Dirac bispinor: ¢ = ( iL )
R

The two-component objects ¢ and @i are called left-handed and right-handed Weyl
spinors. Their transformation laws under rotations & and boosts 3 are

Vv, — AYg, where A = exp(—4
Yr — (A" Y where (A1)"! = exp(-4

There are two inequivalent spinor representations of SL(2,C), the self-representation and
the complex conjugate self-representation. Elements of the representation space transform
under the self-representation as
Xa — AabXb
and under the complex conjugate self-representation as .
Ne — A*dbnl} — nbA*db — UBA*T[’@ — 771;A+ba

Our spinor summation convention is: xn = x*1q = NXx
X7 = Xan™ = 11X
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The components of spinors Y, 1, ... are Grassman variables therefore the quadratic forms
(xn), (x77) are symmetric.

We rise and lower the spinor indices by using the invariant two-dimensional antisymmetric
; SpA, _ ~ab _ b a4 _ ~ab _ b
metric tensor: X = €"Xp, Xa = EabX s N" = YN Na = €M

aab:<_01 é)zadi’:iaz €ab:<(1) _01>:5ab
T

Let us compute the transformation of n% We will need the following relation: (¢%)T =
(O’i)* — _O.2O.i 2

77/a _ eabnl{) _ €db77a A+c'b _ €ab€éd77d A+éi; =c,, A+ébeband'
= —io?(1+ a3 + 355 + - - -)io?
= (1 _ %@ET + %5—’T +"')da77d
= (1= 465+ 300+ )% = (A7) !

Thus we see the index structure in the Dirac bispinor: (¢1,)a, (¢¥5)%

We know that Lorentz group and 2-dimensional special linear group are closely connected.
To be more precise, SL(2,C) is the universal covering group of LL group. For the details
we refer to [19]. From the following relation

b s AGAT = (AL o (A = %TT(@AJMN)

we can uncover the index structure of o matrix:

AL (e AT = (A7), (0%)y

The following relations hold: (g#)3@ = gabgabgt ”
Juad = €ab€ai)(5‘u)bb
The o#”,0" are defined as: o"" := %(J”&” —o’at)
o = g(oto¥ —a"ot)
Here we present useful identities
apb 1 ab 1
0%9° = —5€ (00) 0.0y = §€ab(06)
. 1 . 1 o
0°0b = 5gab(ee) 020}, = —524(00) (A1)
(@ )ea = (6")ab (A.2)
Tr(cta”) = 20 (A.3)

ola¥ +o"ct = 2wt (A.4)
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5ac(0'uy)bc = 5bc(auy)ac
ei(@)Ve = e4(@™)s (A.5)
boiE = —Esh0 (A.6)
(BohE)T = (¢0M0) (A7)
(0578)(6576) — %nﬂ”(ee)(éé) (A.8)
Tr(amam) = ponen - ypre) - Lomwem
Tr( o) = Lo —ypmyr) 4 Lo (A9

In the course of chapter 2 and 3 when constructing lagrangian we will need the following
relations

; 1 1 2
o' G’ = S(o"a" +0"5")," + 5 (00" = o"ah), S =6, + oM, 0 (A10)

gh by, = %(6“0” + &%), + ;(a”a — YoM, =gt + 36"” ‘ic. (A.11)
Here we show an useful example of manipulating with Weyl spinors
00,(0540) = 0°0u1ba0°c",,0° = eaebauwaa 0°

_ 2 ab(ee) Oprbac™, 0 = —5(09)auzpba“bé0é (A.12)

As we mentioned above, 0,,0; are Grassman numbers. That means, they anticommute
among themselves: {0,0,} = {04,0;} = {04,0; }
Despite the fact that they are discrete objects we can construct a differentional calculus
for them. We define the derivatives formally as

agaeb —5b Hb —5b
8 eb _6a 8 Gb _5a

When applying derivation on the product of Graasman variables one must take into account
the anticommutative nature of Grassman numbers

D4(0°0¢ ... 0% = 6L0c ... 0% — 550" ... 07 +
By using the metric tensor we can raise and lower indices of derivatives:
6abab = —0¢ €ab8b = —8a

Here we present useful relations:

aaeb = —Eab 8a9b:—6ab
0aly = —e, b = — (A.13)
0,02 = 20, 9,0 = —20,

20 = —20° 0% = 20° (A.14)



Appendix B

Generic loop diagrams

B.1 Sfermion self-energies

The amplitude for sfermion self-energies is defined as
- == e M=)

where following three diagrams contribute to the II;; (p?).

The first generic self-energy diagram is one containing vector particle in the loop

mo
@ﬁ% [0 igo(2p + q)*
\\\qi@// [1]: igi(2p+q)

mi

(p*) = =5 [Ao(m?) + (49 + m3) Bo(p?, mi, md) + 4p° By (0 mi,m})] (B.1)

The complete argument in the function I1(p?) is II(p?, mg, m1, go, g1)

The second generic diagram includes fermion loop

mo

[0] [0]: i(gk P+ gl Pr)

i(gF P + gftPg)
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— 3 2mmo(gg 91 + 96'01") Bo + 2(95'91" + 90'91) (0* B1 + " Bux + 4Bog

1
T )
1
=~ 32mmolgrar + 90'91) Bo + (9591 + 65°91) (Ao(m§) + Ag(m?)
+ (mg + m% — pQ)BO)] (B.2)

where the arguments of the B integrals are the same as in the previous case and the com-
plete argument in I1(p?) is TI(p?, mo, m1, g%, 98¢, =, g¥%)

The last generic diagram that contributes to the sfermion self-energy is the simplest one

mo
RN
/
Ir/;\\ @; g0

\ !

N
e e . e > — -

0

1

TI(p?, mo) = — 539

0Ao(mg) (B.3)

B.2 Fermion self-energies

The amplitude for fermion self-energies is defined as

The term II(p?) further decomposes to
(p?) = yPLI" (p?) + PRIl (p°) + PLII (p°) + PRITPF (p°) (B.4)

The following two diagrams contribute to the II(p?).

The first generic self-energy diagram is one containing vector particle in the loop
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[0]: i (g P+ gl Pr)

:iy"(gf P + gt PR)

1
HL(pQ) = mg(lfgf(2B0(p2’mg’m%) + 2B1(p25mg’m%))
1
ot p?) = —mgégﬁml‘lBo(pz’mgam%)

mi(p*) = T'(p*)(L < R)
%t (p*) = T¥R(p?)(L — R)

(B.5)

—
o
=)

~—

(B:8)

The complete argument in all I1(p?) in both diagrams is I1(p?, mg, m1, g, &%, g, g7%)

The second generic diagram contains fermion and a scalar particle in the loop

mo
Ve > \\
0]/ 77 0 i(gbPu+ gt Pr)
+ .
I A P
ma
1
HL(p2) = mg(l)lg{%(BO(pQ’m(Q)’m%) + Bl(p2amg’m%))
1
ek (p?) = mgégfmlBo(p2,m%,m%)

" (p®) = I"(p*)(L < R)
% (p*) = m°H(p*)(L < R)

B.3 Vertex corrections

The amplitude for the vertex corrections is defined as

M= fﬂa(pz)(ALPL + ArPr)u(ps)

The first vertex diagram is with the vector particle in the loop

(B.13)
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@1 i(98 Pr + gt Pr)
cigi(q — 2p1)*

iy (gh P+ g8t PR)

APV = 9195 2C0(m7 — m3) + Ca(2m7 + m3 — 2m3) + C1(3m7 — m3)
1
+ 4Co0 — 5t Cr1imi + Cra(mi +m3 — m3) + Caoms]
+  gllg195mams(2Cy + 2C2 + C1) + g& g195ma(2M2Co + MaCy + MaCy)
+ magy 9195 (—2MyCo — MaCh) (B.14)
AR = APY(L < R) (B.15)

The argument of ALYV AFSV ig AgiV(MO,Ml,Mg,gé’,gé{,gl,gg,gg)
The argument in all C;, Cy; integrals is C'(m3, m3, m3, Mg, M, M3)

The second vertex diagram contains two fermions and one scalar in the loop

0]
[1]: i(gtPL + gPg)

. i(g4 Pr, + g5 Pr)

i(98 Pr + gt Pr)

[xo]

AFES = —gbglgb MoM Co + gl gt gBMima(Cr + Co) — g8t gt gk MimsCy

1
— gOLg{?‘ggJ [m%c& + m%CQ +4Chy — 5 + m%Cn + m%CQQ + (m% + m% — mg)Cm]

g6 91 95" ma Mo (Co + C1 + Ca) — g3 gt gy maMo(Co + C1)
96'91 g5'mamsCy (B.16)
ARFS  —  AFFS([ o R) (B.17)

+ +
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The argument of AgFS, AEFS is AﬁiS(MO, My, Mg,gé,g(?,gf,gﬁ,gé’,gg)

The calculation of all presented generic diagrams has been performed in the convention of
the LoopTools program [20].



Appendix C

Bremsstrahlung!

The following bremsstrahlung integrals are taken from [21]. These integrals are applicable
to the processes where a massive particle (ps, ms) decays into two massive particles (p1,m;)
and (p2, ma) and a photon (gluon) (go,A). They read as follows

1erd 1 [ dpy d®po diq +£2qpj, ... & 2qp;,,
B == -——-—0(p3 —p1 —p2—q) - ! (C.1)

72 ) 2pi0 2p20 290 +2qpi; - .. = 2qp;,

The plus signs belong to p1, po and the minus sign to ps.

The decay width for the neutralino decay into antisbottom squark, bottom quark and
a gluon reads:
1 g

Dorems = Img 257 Cp(cl + cily + coly + cinliy + cialia + coloo + &3 15) (C.2)

where the corresponding coefficients are:

¢ = aa” +bb* (C.3)
a1 = 2[(m}—m3—m3)(aa* + bb*) — 2mamsz(ab* + ba*)] (C.4)
Cp = C (C5)

ci1 = 2[(m]—mim3 —mim3)(aa* + bb*) — 2mimams(ab* + ba*)] (C.6)
ci2 = 2[(mi—m3+ms—2mim3)(aa* + bb*)

—  2(m3myms — mom3 + miams)(ab* + ba*)] (C.7)

cor = 2[(—mi — mim3 — m3m3)(aa* + bb*) — 2mims(ab* + ba*)] (C.8)

ci = aa*+bb* (C.9)

where the masses and couplings are: m; = Mg, My = Myf,M3 = Mg, 0= ik, b= b;,. The
analytic forms of the bremsstrahlung integrals are given in the mentioned article.

! Calculations in the original thesis did not include Bremsstrahlung
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