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Abstrakt

V mojej diplomovej práci odvádzam lagranžián pre teóriu MSSM vo formalizme super-
priestoru a superpolí. Mojou snahou je, aby výsledná notácia čo najviac súhlasila s notá-
ciou, ktorá sa používa na Inštitúte Fyziky Vysokých Energií vo Viedni. Počítam šírku
rozpadu pre rozpad neutralína na antisbottom a bottom quark na jednoslučkovej úrovni
s uvážením iba QCD korekcií, pričom používam Feynmanové pravidlá, ktoré vyplývajú z
odvodeného lagranžiánu. V závere práce uvádzam grafy, na ktorých šírky rozpadu a hmot-
nosti častíc závisia od MSSM parametrov.

Diplomová práca je rozvrhnutá nasledovným spôsobom:

V prvej kapitole podávam stručný úvod do teórie supersymetrického modelu.

V druhej a tretej kapitole je načrtnuté odvodenie minimálneho supersymetrického la-
granžiánu pre všeobecné superpolia.

V štvrtej kapitole dosádzam konkrétne superpolia, ktorých časticový obsah pozostáva z
polí známych zo Štandardného Modelu ako aj z nových predpovedaných polí, ktoré ešte
len čakajú na svoj objav na budúcich a možno už aj súčasných urýchľovačoch. Ďalej
odvádzam vertexy, ktoré sú dôležité pri výpočte šírky rozpadu.

V piatej kapitole sa venujem renormalizácii MSSM. Zaoberám sa hlavne renormalizáciou
sfermiónových ako aj fermiónových polí.

Posledná, šiesta kapitola obsahuje výpočet šírky rozpadu na stromovej ako aj na jed-
noslučkovej úrovni. Na konci tejto kapitoly uvádzam výsledné grafy.

V dodatku A, na konci práce, uvádzam prehľad vzťahov, ktoré sú dôležité pri práci so
spinormi a Grassmanovými číslami. Zároveň definujem notáciu, ktorú používam.
V dodatku B sú uvedené ručne zrátané generické diagramy.

kľúčové slová: teória MSSM, formalizmus superpriestoru, rozpad neutralína,
QCD korekcie
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Abstract

In my master thesis I derive the lagrangian for the MSSM theory using the formalism of
superspace and superfields. I try to be as close to the notation that is used at the Insti-
tute for High Energy Physics in Vienna as possible. I calculate the decay width for the
neutralino decay to an antisbottom and a bottom quark at a one loop level considering
only the QCD corrections using Feynman rules coming from the derived lagrangian. At
the end of my thesis I present graphs where the decay widths and particle masses depend
on various MSSM parameters.

The thesis is divided into the following parts:

In the first chapter I shortly introduce the theory of a supersymmetric model.

In the second and third chapter I present the derivation of the minimal supersymmet-
ric lagrangian for the general superfields.

In the fourth chapter I put concrete superfields into the lagranian those particle content
comprise of the fields known from the Standard Model as well as from the new predicted
fields which are yet to be found on the future and maybe on the present-day colliders. I
also derive the vertices important for the neutralino decay.

The fifth chapter deals with the renormalization of the MSSM. I focus mainly on the
renormalization of the fermion as well as of the sfermion fields.

The last sixth chapter includes the calculation of the tree and one loop level decay width.
At the end of the chapter I present the resulting graphs.

In the appendix A I present the summary of the identities which are essential to the
work with spinors and Grassman numbers. I define the notation at the same time.
The appendix B involves the generic diagrams calculated by hand.

keywords: MSSM theory, superspace formalism, neutralino decay, QCD corrections
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Chapter 1

Introduction

The Standard Model of elementary particle physics (SM) is a remarkably successful theory
of the known particles and their electroweak and strong forces. Although the SM correctly
describes all known microphysical nongravitational phenomena, there are a number of
theoretical and phenomenological issues that the SM fails to address adequately, whereas
the MSSM provides explanations [1].

• Hierarchy problem
Phenomenologically the mass of the Higgs boson associated with the electroweak
symmetry breaking must be in the electroweak range. However, radiative corrections
to the Higgs mass are quadratically dependent on the UV cutoff Λ, since the masses
of the fundamental scalar fields are not protected by chiral or gauge symmetries.
The "natural" value of the Higgs mass is therefore of O(Λ) rather than O(100GeV ),
which leads to a destabilization of the hierarchy of the mass scales in the SM.
The MSSM introduces new particles into the theory that couple to the Higgs and
appear in the loop. These particles cancel the quadratic divergence and thereby solve
the hierarchy problem.

• Gauge coupling unification
In the contrast to the SM, the MSSM allows for the gauge coupling unification. The
extrapolation of the low energy values of the gauge couplings using renormalization
group equations and the MSSM particle content shows that the gauge coupling unify
at the scale 3× 1016 GeV. This quality lends credence to the picture of grand unified
theories (GUTs) and certain string theories. Precise measurements of the law en-
ergy values of the gauge coupling demonstrated that the SM cannot describe gauge
coupling unification.

• Electroweak symmetry breaking (EWSB)
In the SM, electroweak symmetry breaking is parametrized by the Higgs boson h and
its potential V (h). However, the Higgs sector is not constrained by any symmetry
principles, the negativeness of the parameter µ2 is put into the theory by hand.
The MSSM provides an explanation of the origin of EWSB.

• Dark matter
In supersymmetric theories, the lightest superpartner (LSP) can be stable. This

1



1. Introduction 2

particle provides a very good candidate for the cold dark matter.

Supersymmetry algebra

The theorem of Coleman and Mandula [2] demonstrates that the most general group
of symmetries of the S-matrix is locally isomorphic to the direct product of a compact
symmetry group and the Poincaré group. Haag, Lopuszanski and Sohnius extended the
theorem by generalization of the notion of a Lie algebra to include algebraic systems whose
defining relations involve in addition to the usual commutators also anticommutators [3].
These algebras are called superalgebras.

The simplest superalgebra involves only one set of the fermionic generators Qα ([4],[5],[6])

[Pµ, P ν ] = 0 (1.1)

[Mµν , P λ] = i(ηνλPµ − ηµλP ν) (1.2)

[Mµν ,Mρσ] = i(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) (1.3)

[Pµ, Qa] = 0 = [Pµ, Qȧ] (1.4)

[Mµν , Qa] = −i(σµν) b
a Qb (1.5)

[Mµν , Qȧ] = −i(σ̄µν)ȧ
ḃ
Qḃ (1.6)

{Qa, Qb} = 0 = {Qȧ, Qḃ} (1.7)

{Qa, Qḃ} = 2σµ
aḃ
Pµ (1.8)

In this set of equations we have omitted the generators of the internal symmetry group
which commutes with Pµ, Mµν but their presence is of course allowed by the two previously
mentioned theorems. This symmetry group is the known SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

An irreducible representation of the superalgebra has the number of fermionic states equal
to the number of bosonic states. This can be proved with the help of equation (1.8) and
realizing that the generators Qa, Qḃ change a bosonic state into a fermionic one and vice
versa.

The supersymmetry predicts many new particles. Because the generators Qa commute
with the mass squared operator P 2 = PµP

µ the particles and its superpartners poses
equal masses. However, this does not agree with the observed phenomena therefore the
supersymmetry must be broken.

The Minimal Supersymmetric Standard Model (MSSM) extends the Standard Model in
a minimal manner. That means, incorporating only one set of SUSY generators into the
theory. Moreover, in the MSSM one makes the minimal choice of the Higgs sector, works
only with two Higgs doublets. The SUSY is broken explicitly by the so-called soft SUSY
breaking mechanism which allows for terms causing no quadratic divergences.



Chapter 2

Superspace and Superfields

2.1 General superfield

It is possible to derive a supersymmetric theory without using the formalism of superspace.
Such treatment is described in Martin’s Supersymmetry primer [7]. But the more elegant
way is to work in the superfield language. In this formalism the supersymmetry is inher-
ently manifest like Lorentz invariance in four dimensional Minkowski space.

In supersymmetric models this four dimensional space is extended to superspace. Su-
percoordinates consist of the usual four Minkowski coordinates and of four anticommuting
Grassman numbers that can be compactly written by the use of the two Weyl spinors.

superspace coordinates: (xµ, θa, θȧ) a = 1, 2 ȧ = 1̇, 2̇

A general superfield Φ is an operator-valued function defined on superspace and is un-
derstood in terms of its power series expansion in θ and θ̄. In addition, superfield is a
Lorentz scalar or pseudoscalar as we want to build a supersymmetric lagrangian that is
Lorentz invariant.

Φ(x, θ, θ̄) = f(x) + θaφa(x) + θȧχ
ȧ(x) + (θθ)m(x) + (θ̄θ̄)n(x)

+(θσµθ̄)Vµ(x) + (θθ)θȧλ
ȧ(x) + (θ̄θ̄)θaψa(x)

+(θθ)(θ̄θ̄)d(x) (2.1)

The elements f(x), φa(x), χ
ȧ(x) . . . are called component fields.

An element of the subgroup of the supersymmetry group (when we omit Mµν) is

G(x, θ, θ̄) = exp[i(−xµPµ + θQ+ θ̄Q̄)] (2.2)

Now we would like to construct linear representation of this group (of the superalgebra).
We consider the right action induced in (xµ, θa, θȧ) parameter space by the group elements

G(x, θ, θ̄)G(a, ξ, ξ̄) = exp
[
i
(
− (xµ + aµ)Pµ − i(ξσµθ̄)Pµ + i(θσµξ̄)Pµ

+ (θ + ξ)Q+ (θ̄ + ξ̄)Q̄
)]

= G(xµ + aµ + i(ξσµθ̄) − i(θσµξ̄), θ + ξ, θ̄ + ξ̄) ≡ G(B) (2.3)

3



2. Superspace and Superfields 4

where we have used the relation: eAeB = eA+B+ 1

2
[A,B]+...

Thus the supersymmetric generators induce the motion in group parameter space:
(x, θ, θ̄) → (B). For a superfield that is a function on the superspace we have

Φ(B) = Φ(x, θ, θ̄) + (aµ + iξσµθ̄ − iθσµξ̄)
∂Φ

∂xµ
+ ξa

∂Φ

∂θa
+ ξȧ

∂Φ

∂θȧ
+ . . .

!
=

(
1 − iaµPµ + iξQ+ iξ̄Q̄+ . . .

)
Φ(x, θ, θ̄) (2.4)

Hence the supersymmetric generators and momentum generator represented as differential
operators are given by

Pµ = i∂µ

iQa =
∂

∂θa
+ i(σµ)aḃθ

ḃ∂µ

iQȧ =
∂

∂θȧ
+ i(σ̄µ)ȧbθb∂µ (2.5)

This is the linear representation of the supersymmetry algebra we were looking for. It can
be explicitly verified that the generators satisfy the relations of superalgebra. Next we will
show that the anticommuting relation (1.8) holds

{Qa, Qḃ}Φ = −{∂a + iσµaċθ
ċ∂µ,−∂ḃ − iθbσν

bḃ
∂ν}Φ

= {∂a, ∂ḃ}Φ + i{∂a, θbσµbḃ∂µ}Φ + i{σµaċθċ∂µ, ∂ḃ}Φ
− {σµaȧθċ∂µ, θbσνbḃ∂ν}Φ = 2σµ

aḃ
PµΦ (2.6)

where for example

{∂a, θbσµ
bḃ
∂µ}Φ = ∂a[θ

bσµ
bḃ
∂µΦ] + θbσµ

bḃ
∂µ∂aΦ

= δbaσ
µ

bḃ
∂µΦ − θbσµ

bḃ
∂µ∂aΦ + θbσµ

bḃ
∂µ∂aΦ = iσµ

aḃ
∂µΦ (2.7)

The infinitesimal supersymmetric transformation (not considering momentum generator)
can be seen from the relations (2.2) and (2.3)

Φ → Φ + δSΦ

δS = i(ξQ+ ξ̄Q̄) (2.8)

Next we define covariant derivatives

Da = ∂a − i(σµ)aḃθ
ḃ∂µ

Dȧ = ∂ȧ − i(σ̄µ)ȧbθb∂µ (2.9)

The very important feature (hence its name) of covariant derivatives is that they commute
with the infinitesimal supersymmetric transformation

[Da, δS ] = 0

[Dȧ, δS ] = 0 (2.10)
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The general superfield does not provide an irreducile representation of the supersymmetry
algebra. By imposing the constraints that are covariant under the algebra we come to an
irreducible representation. These constraints yield the following three types of superfields

DȧΦ(x, θ, θ̄) = 0 → left-handed chiral (scalar) superfield

DaΦ
†(x, θ, θ̄) = 0 → right-handed chiral (scalar) superfield

Φ(x, θ, θ̄) = Φ†(x, θ, θ̄) → vector superfield (2.11)

2.2 Chiral superfields

2.2.1 Left-handed chiral superfield

Our aim is to find out a superfield that satisfies the first condition in (2.11). It is easier to
solve the constraint in terms of the new variables (y, θ′, θ̄′) where

yµ = xµ − iθσµθ̄

θ′a = θa, θ
′
ȧ = θȧ (2.12)

The covariant derivative after transforming to this new variables is

Dȧ = − ∂

∂θȧ

∣∣∣∣∣
y,θ

(2.13)

Now to get general solution it suffices (because Dȧ(x)y
µ = 0,Dȧ(x)θ = 0 and because the

Φ cannot contain the variable θ̄ as the relation (2.13) indicates) to expand the superfield
in the variables y, θ

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y) (2.14)

where φ, F are complex scalar fields (giving four bosonic degrees of freedom) and ψ is
left-handed Weyl spinor (four fermionic degrees of freedom). The dependence on the left-
handed spinor is the origin for the name of left-handed superfield. We will see later that
the field F plays the role of auxiliary field (does not have a dynamical term in lagrangian).

Transforming back to the original variables we obtain

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x)− i∂µφ(x)(θσµθ̄)

− i
√

2θ∂µψ(x)(θσµθ̄) − 1

2
∂µ∂νφ(x)(θσµθ̄)(θσν θ̄) (2.15)

And using relations (A.8), (A.12) we come to the final expression

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x)− i∂µφ(x)(θσµθ̄)

+
i√
2
(θθ)∂µψ(x)σµθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µφ(x) (2.16)
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2.2.2 Right-handed chiral superfield

Right-handed superfield satisfies the second condition in (2.11). One can derive the solution
in analogous way to previous subsection. The new variables are

zµ = xµ + iθσµθ̄

θ′a = θa, θ
′
ȧ = θȧ (2.17)

Then the covariant derivative transforms to be

Da =
∂

∂θa

∣∣∣∣∣
z,θ̄

(2.18)

Expansion of right-handed superfield in new variables is

Φ†(z, θ̄) = φ∗(z) +
√

2θ̄ψ̄(z) + θ̄θ̄F ∗(z) (2.19)

And after transforming back to the original variables the final expression is as follows

Φ†(x, θ, θ̄) = φ∗(x) +
√

2θ̄ψ̄(x) + θ̄θ̄F ∗(x) + i∂µφ
∗(x)θσµθ̄

− i√
2
(θ̄θ̄)θσµ∂µψ̄(x) − 1

4
(θθ)(θ̄θ̄)∂µ∂

µφ∗(x) (2.20)

We finally remark that zµ is complex conjugate of yµ and (after realizing the identity
(A.7)) the superfield Φ† is conjugate of the superfield Φ as one could anticipate earlier.

Next we show sum of left and right chiral superfield which will become important later by
definition of gauge transformation of vector superfield.

Φ(x) + Φ†(x) = φ(x) + φ∗(x) +
√

2θψ(x) +
√

2θ̄ψ̄(x)

+ (θθ)F (x) + (θ̄θ̄)F ∗(x) + iθσµθ̄∂µ
(
φ∗(x) − φ(x)

)

− i√
2
(θθ)θ̄σ̄µ∂µψ(x) − i√

2
(θ̄θ̄)θσµ∂µψ̄(x)

− 1

4
(θθ)(θ̄θ̄)∂µ∂

µ
(
φ(x) + φ∗(x)

)
(2.21)

2.2.3 Supersymmetric transformation of component fields

The transformation law for a general superfield is defined by components. In this subsection
we will demonstrate as an example the transformation of the components of the left-handed
chiral superfield

δSΦ(y) = δSφ(y) +
√

2θδSψ(y) + θθδSF (y) (2.22)

It is easier to work with the generators Q (2.5) written in variable y

iQa(y) = ∂a

iQȧ(y) = ∂ȧ − 2iθbσµ ȧ
b ∂µ (2.23)
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When we apply the last two equations on the relation (2.8) we obtain

δSΦ =
√

2ξψ + 2ξθF + i
√

2(θθ)(∂µψσ
µξ̄) − 2i(θσµξ̄)∂µφ (2.24)

And after the comparison of the terms standing by the equal power of Grassman number
θ in relations (2.22), (2.24) we finally come to the transformed component fields

δSφ =
√

2ξψ (2.25)

δSψa =
√

2ξaF − i
√

2σµ
aḃ
ξḃ∂µφ (2.26)

δSF = i
√

2(∂µψσ
µξ̄) (2.27)

We observe that the field F transforms into a total divergence. This will become important
when constructing supersymmetric lagrangian implying its invariance under supersymmet-
ric transformation.

2.2.4 Products of chiral superfields

For the construction of supersymmetric lagrangian one needs the products ΦiΦj,Φ
†
iΦj ,

ΦiΦjΦk where indices i, j, k distinguish various superfields. The higher products lead to
nonrenormalizable theories therefore we will not consider them.

The product of chiral superfields of the equal handedness is a chiral superfield of the
same handedness

Φi(y, θ)Φj(y, θ) = φi(y)φj(y) +
√

2θ
(
ψi(y)φj(y) + φi(y)ψj(y)

)

+ θθ
(
φi(y)Fj(y) + φj(y)Fi(y) − ψi(y)ψj(y)

)
(2.28)

Φi(y, θ)Φj(y, θ)Φk(y, θ) = φi(y)φj(y)φk(y)

+
√

2θ
(
ψi(y)φj(y)φk(y) + φi(y)ψj(y)φk(y) + φi(y)φj(y)ψk(y)

)

+θθ
(
φi(y)φj(y)Fk(y) + φi(y)Fj(y)φk(y) + Fi(y)φj(y)φk(y)

−ψi(y)ψj(y)φk(y) − ψi(y)ψk(y)φj(y) − ψj(y)ψk(y)φi(y)
)

(2.29)

Φ†
i (x)Φj(x) = . . .− 1

4
(θθ)(θ̄θ̄)

[
φ∗i (x)∂µ∂

µφj(x) + φj(x)∂µ∂
µφ∗i (x)

]

+ (θσµθ̄)(θσν θ̄)(∂µφ
∗
i (x))(∂νφj(x)) − i(θ̄θ̄)(θσµ∂µψ̄i(x))(θψj(x))

+ i(θ̄ψ̄i(x))(θθ)(∂µψj(x)σ
µθ̄) + (θθ)(θ̄θ̄)F ∗

i (x)Fj(x)

= . . .+ (θθ)(θ̄θ̄)
[
F ∗
i (x)Fj(x) − φ∗i (x)(∂µ∂

µφj(x))

− i(∂µψ̄i(x)σ̄
µψj(x))

]
(2.30)

The last product is not a chiral superfield but vector superfield treated in the following
section. We have explicitly showed only the (θθ)(θ̄θ̄) - component as this component in
general superfield also transforms into a total divergence under a supersymmetric trans-
formation and therefore becomes important for the construction of the supersymmetric
invariant lagrangian.
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2.3 Vector superfield

The third type of a superfield is a vector superfield. In deriving its component expansion
we start from the expression for a general superfield

Φ(x, θ, θ̄) = C(x) + θaφa(x) + θȧχ
ȧ(x) + (θθ)M(x) + (θ̄θ̄)N(x)

+(θσµθ̄)Vµ(x) + (θθ)θȧλ
ȧ(x) + (θ̄θ̄)θaψa(x)

+(θθ)(θ̄θ̄)D(x) (2.31)

If we require Φ(x, θ, θ̄) = Φ†(x, θ, θ̄) then we are left with the following restrictions

C = C∗ Vµ = V ∗
µ D = D∗ (2.32)

M∗ = N φ = χ λ = ψ (2.33)

The vector superfield thus consists of two Weyl spinors λ, χ (eight real fermionic degrees
of freedom), two real scalars C,D, one complex scalar M and one real vector Vµ (giving
altogether eight real bosonic degrees of freedom).

Now we rewrite the vector superfield in a more convenient way in which certain com-
ponents of V are invariant under gauge transformation that will be defined below. We
achieve this by sending

λ(x) → λ(x) − i

2
σµ∂µχ̄(x) (2.34)

D(x) → 1

2
D(x) − 1

4
∂µ∂

µC(x) (2.35)

The helpful relation one will need is (σµ
aḃ

)† = σµbȧ. Finally we obtain

V (x, θ, θ̄) = C(x) + θχ(x) + θ̄χ̄(x) + (θθ)M(x) + (θ̄θ̄)M∗(x)

+ θσµθ̄Vµ(x) + (θθ)θ̄
(
λ̄(x) − i

2
σ̄µ∂µχ(x)

)

+ (θ̄θ̄)θ
(
λ(x) − i

2
σµ∂µχ̄(x)

)
+ (θθ)(θ̄θ̄)

(
1

2
D(x) − 1

4
∂µ∂

µC(x)

)
(2.36)

The supersymmetric generalization of a gauge transformation is defined as

V (x, θ, θ̄) → V (x, θ, θ̄) + Φ(x, θ, θ̄) + Φ†(x, θ, θ̄)

→ V (x, θ, θ̄) + iΛ(x, θ, θ̄) − iΛ†(x, θ, θ̄) (2.37)

where Φ is some left-handed chiral superfield. In component fields the gauge transformation
gives

C → C + φ+ φ∗ Vµ → Vµ + i∂µ(φ
∗ − φ)

χ→ χ+
√

2ψ λ→ λ

M →M + F D → D (2.38)

We see that the component fields λ,D are invariant under the gauge transformation.
Equally important observation is that vector component Vµ transforms into a gradient.
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This motivated us to define the gauge transformation in the presented form.

From the set of equations (2.38) we see that we can choose particular scalar field Φ (that
is particular gauge) in which the fields C,χ,M vanish. This gauge is called Wess-Zumino
gauge. We remark that this gauge does not fix the imaginary part of the field φ, we are
free to set it zero.

When we finally redefine λ→ −iλ and λ̄→ iλ̄ we get

VWZ(x, θ, θ̄) = θσµθ̄Vµ(x) + i(θθ)θ̄λ̄(x) − i(θ̄θ̄)θλ(x) +
1

2
(θθ)(θ̄θ̄)D(x) (2.39)

The advantage of the Wess-Zumino gauge is that the third and higher powers of the vector
superfield V equal zero. Then for instance

exp(V ) = 1 + V +
1

2
V 2 = 1 + θσµθ̄Vµ(x) + i(θθ)θ̄λ̄(x) − i(θ̄θ̄)θλ(x)

+ (θθ)(θ̄θ̄)

(
1

2
D(x) +

1

4
V µ(x)Vµ(x)

)
(2.40)

2.4 Field strength superfield

The supersymmetric field strength for an arbitrary vector superfield V is defined by its
components

Wa = −1

4
(D̄D̄)DaV

Wȧ = −1

4
(DD)DȧV (2.41)

These spinor superfields are chiral ones (they satisfy the first two constraints in (2.11)).
With the help of the relation {D̄,D}Φ ∼ PµΦ and [D̄, Pµ] = 0 one can prove that the
superfields are also gauge invariant.

When expanding the superfield Wa the most plausible way is to calculate it in the variable
y since the two covariant derivatives (D̄D̄) become very simple. We start our calculating
with

DaV (y) = (∂a − 2iσµ
aḃ
θḃ∂µ)

[
θσν θ̄Vν(y) + i(θθ)θ̄λ̄(y) − i(θ̄θ̄)θλ(y)

+
1

2
(θθ)(θ̄θ̄)

(
D(y) + i∂µV

µ(y)
)]

(2.42)

with the realization of the following relation

−1

4
D̄D̄(θ̄θ̄) = −1

4
(−∂ȧ∂ȧ)(θ̄θ̄) =

1

2
∂ȧθ

ȧ = 1 (2.43)

it is not complicated to come to the expanded form of the field strength Wa

Wa(y) = −iλa(y) + θaD(y) − (θθ)σµaċ∂µλ̄
ċ(y)

+ iσµ
aḃ
εḃċθbσνbċ∂µVν(y) + iθa∂µV

µ(y) (2.44)
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This is still not the final form because the third term can be rewritten and its one part
will cancel the fourth term

iσµ
aḃ
εḃċθbσνbċ∂µVν(y) = iεbdθdε

ḃċσµbċσ
ν
aḃ
∂µVν(y) = −iθdσµaḃσ̄

ν ḃd∂µVν(y)

= −iθa∂µV µ(y) − 2σµν d
a θd∂µVν(y) (2.45)

where we have used the relation (A.10). In an analogous way one can calculate the expan-
sion of the superfield Wȧ

Wa(y) = −iλa(y) + θaD(y) − (σµνθ)aVµν(y) − (θθ)(σµ∂µλ̄(y))a

Wȧ(z) = +iλȧ(z) + θȧD(z) + εȧḃ(σ̄
µν θ̄)ḃVµν(z) − (θ̄θ̄)(∂µλ(z)σµ)ȧ (2.46)

where Vµν = ∂µVν − ∂νVµ is the field strength tensor we are used to from the Standard
Model.

2.5 Supersymmetric lagrangian - the abelian case

The most general and renormalizable lagrangian that includes chiral as well as vector
superfields is

L = LΦ + LW (2.47)

where

LΦ = Φ†
iΦi

∣∣∣
θθθ̄θ̄

+
[(1

2
mijΦiΦj +

1

3
bijkΦiΦjΦk + ciΦi

)∣∣∣
θθ

+ h.c.
]

(2.48)

LW =
1

4

(
W aWa|θθ +WȧW

ȧ|θ̄θ̄
)

(2.49)

The constants mij, bijk are symmetric in their indices. Since Wa is chiral, W aWa is a scalar
field and therefore the θθ-component is of interest in our construction as this component
transforms into a derivative. Expansion of the supersymmetric invariant lagrangian density
LΦ to components yields

LΦ = iψ̄i(x)σ̄
µ∂µψi(x) − φ∗i (x)∂µ∂

µφi(x) + F ∗
i (x)Fi(x)

+
[
mikφk(x)Fk(x) + bijkφi(x)φj(x)Fk(x)

− 1

2
mijψi(x)ψj(x) − bijkψi(x)ψj(x)φk(x) + ciFi(x) + h.c.

]
(2.50)

When deriving the lagrangian density LW one needs to use identities (A.1), (A.5) and
(A.9). With their help we obtain

W aWa

∣∣∣
θθ

= D2(x) + 2iλ(x)σµ∂µλ̄(x) − 1

2
Vµν(x)V

µν(x) − i

4
εµνρσVµνVρσ (2.51)

WȧW
ȧ
∣∣∣
θ̄θ̄

= D2(x) − 2i∂µλ(x)σµλ̄(x) − 1

2
Vµν(x)V

µν(x) +
i

4
εµνρσVµνVρσ (2.52)

Then the supersymmetric and gauge invariant hermitian lagrangian density LW is given
by

LW = iλ(x)σµ∂µλ̄(x) +
1

2
D2(x) − 1

4
Vµν(x)V

µν(x) (2.53)
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Here we can summarize what our lagrangian L describes. In LΦ we have got a kinetic
term for the fermion ψ as well as for the sfermion φ. We have also got an interaction
between this two fields. LW contains kinetic term for the gaugino λ as well as for the
vector particle V . Here is the proper time to remark that the kinetic term for ψ (λ) is a
part of the Dirac equation (Majorana equation) with the sign as in the book of Peskin,
Schroeder [8]. This was one of our goals and we also remark that this sign was the reason
why we have chosen the action from the right at the very beginning (see (2.3)).

The fields F,D are auxiliary fields and can be replaced by considering the Euler-
Lagrange equation which further leads to new interaction terms.

The whole lagrangian does not describe the interaction of matter particles (φ,ψ) with
gauge particles (V, λ). This interaction will occur when we consider the non-abelian case.



Chapter 3

Supersymmetric non-abelian gauge

theories

3.1 The most general lagrangian

In this chapter we will discuss the gauge invariant interactions of chiral and vector super-
fields.
Let G be a compact gauge group with Lie algebra G. Under a local gauge transformation
the left and right handed chiral superfields change to

Φ′
i = e−i2giΛ(x)Φi (Φ′

i)
† = Φ†

ie
i2giΛ

†(x) (3.1)

where Λ is a matrix
Λij = T

(a)
ij Λ(a) (3.2)

and the superfields Λ(a) satisfy the chirality condition (2.11) so that transformed Φ remains
chiral.
The matrices T (a) are the hermitian generators of the gauge group in the particular repre-
sentation that is defined by the chiral field Φ. In the adjoint representation we normalize
the generators as follows

Tr(T (a)T (b)) = kδab, k > 0 (3.3)

and the commutator of the generators is

[T (a), T (b)] = itabcT (c) (3.4)

where tabc are the structure constants of the gauge group G.

The kinetic term Φ†Φ in the lagrangian (2.48) is not invariant under the local gauge
transformation. We are forced to introduce the vector superfield V provided also that we
extent the transformation law (2.37)

e2giV
′(x) = e−i2giΛ

†(x)e2giV (x)ei2giΛ(x) (3.5)

12
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where the superfield V is a matrix as well

Vij = V (a)T
(a)
ij (3.6)

With this addition, the lagrangian L ′
Φ is

L
′
Φ = Φ†

ie
2giVΦi

∣∣∣
θθθ̄θ̄

+

[(
1

2
mijΦiΦj +

1

3
bijkΦiΦjΦk + ciΦi

) ∣∣∣∣
θθ

+ h.c.
]

(3.7)

To obtain gauge invariant theory we also have to satisfy the demands of the following
relations

ci = 0 if gi 6= 0

mij = 0 if gi + gj 6= 0

bijk = 0 if gi + gj + gk 6= 0 (3.8)

We are also forced to generalize the prescription for the field strength superfields

Wa = −1

4
D̄D̄e−2gVDae

2gV (3.9)

Wȧ = −1

4
DD

(
Dȧe

2gV
)
e−2gV (3.10)

Under the gauge transformation the Wa,Wȧ transform in the following way

W ′
a = e−i2gΛWae

i2gΛ (3.11)

W ′
ȧ = e−i2gΛ

†

Wȧe
i2gΛ†

(3.12)

Here we explicitly show the gauge transformation of Wȧ

W ′
ȧ ∼ DD[Dȧ(e

−i2gΛ†

e2gV ei2gΛ)]e−i2gΛe−2gV ei2gΛ
†

=

= DD[Dȧ(e
−i2gΛ†

e2gV )]e−2gV ei2gΛ
†

=

= DD(Dȧe
−i2gΛ†

)ei2gΛ
†

+DDe−i2gΛ
†

(Dȧe
2gV )e−2gV ei2gΛ

†

(3.13)

The second term gives the required result while the first term equals zero

DD(Dȧe
−i2gΛ†

)ei2gΛ
†

= DD(Dȧ1) −DD[e−i2gΛ
†

Dȧe
i2gΛ†

]

= −e−i2gΛ†

Da{Da,Dȧ}ei2gΛ
†

= −e−i2gΛ†

2σµaȧPµD
aei2gΛ

†

= 0 (3.14)

Now we are ready to write down the full supersymmetric and local gauge invariant lagragian
that describes renormalizable interaction of scalar, spinor and vector fields

L =
1

16kg2
Tr
(
W aWa

∣∣∣
θθ

+WȧW
ȧ
∣∣∣
θ̄θ̄

)
+ Φ†e2gV Φ

∣∣∣
θθθ̄θ̄

+
(
W + h.c.

)
(3.15)

where W is called the superpotential and represents the products of chiral superfields.
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3.2 Component expansion of the lagrangian

Our task now is to expand the lagrangian (3.15) into the components. At the end of the
long journey we would like to recognize for instance the Dirac equation for the Dirac bi-
spinor which will appear from the combination of the two Weyl spinors ψ as well as the
Majorana equation for gaugino λ, then we will obtain kinetic term for the sfermion φ and
for vector particle V µ and finally, we will get the interaction of the vector, fermion and
sfermion fields.

3.2.1 The term containing superfields Φ, Φ†

Here we write again the expansion of the left and right handed superfield as well as the
expansion of e2gV (x)

Φ(xµ, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x)− i∂µφ(x)θσµθ̄

+
i√
2
(θθ)∂µψ(x)σµθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µφ(x) (3.16)

Φ†(xµ, θ, θ̄) = φ∗(x) +
√

2θ̄ψ̄(x) + θ̄θ̄F ∗(x) + i∂µφ
∗(x)θσµθ̄

− i√
2
(θ̄θ̄)θσµ∂µψ̄(x) − 1

4
(θθ)(θ̄θ̄)∂µ∂

µφ∗(x) (3.17)

e2gV (x) = 1 + 2gV + 2g2V 2 = 1 + 2g(θσµθ̄)Vµ(x) + i2g(θθ)θ̄λ̄(x)

− i2g(θ̄θ̄)θλ(x) + (θθ)(θ̄θ̄)
(
gD(x) + g2V µ(x)Vµ(x)

)
(3.18)

Now we need to make a product of these three long expressions. Part of this product has
been already counted when we have dealt with the ΦΦ† (see first three terms in (2.50)).
We also mention that now we cannot forget that V is a matrix and Φ†

i ,Φj , (i, j = 1
for U(1), i, j = 1, 2 for SU(2), i, j = 1, 2, 3 for SU(3)) is a line, respectively a column.
The remaining terms are

√
2(θ̄ψ̄i)2g(θσ

µθ̄)V (a)
µ T

(a)
ij

√
2(θψj)

∣∣∣
θθθ̄θ̄

= −gT (a)
ij V

(a)
µ (ψ̄iσ̄

µψj) (3.19)

i∂µφ
∗
i (θσ

µθ̄)2g(θσν θ̄)V (a)
ν T

(a)
ij φj

∣∣∣
θθθ̄θ̄

= igT
(a)
ij V (a)

µ (∂µφ∗i )φj (3.20)

φ∗i 2g(θσ
µθ̄)V (a)

µ T
(a)
ij (−i)∂νφj(θσ̄ν θ̄)

∣∣∣
θθθ̄θ̄

= −igT (a)
ij V (a)

µ φ∗i (∂
µφj) (3.21)

√
2(θ̄ψ̄i)i2g(θθ)(θ̄λ̄

(a))T
(a)
ij φj

∣∣∣
θθθ̄θ̄

= −i
√

2gT
(a)
ij (λ̄(a)ψ̄i)φj (3.22)

φ∗i (−i2g)(θ̄θ̄)(θλ(a))T
(a)
ij

√
2(θψj)

∣∣∣
θθθ̄θ̄

= i
√

2gT
(a)
ij φ∗i (λ

(a)ψj) (3.23)

g2(T (a)T (b))ijV
(a)
µ V µ(b)φ∗iφj + gT

(a)
ij D(a)φ∗iφj (3.24)

The resulting terms agrees with the terms published in the work of Haber and Kane [9] in
appendix B, equation (B2).

3.2.2 The term containing field strength suprefields Wa, Wȧ

The superfield Wa(y) consists of the terms appearing in relation (2.46) multiplied by the
factor 2g and of the addtional terms that arise because of the additional terms in the
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definition (3.9). So now the superfield Wa that is now a matrix consists of the following
components

Wa(y) = −i2gλa(y) + 2gθaD(y) − 2g(σµνθ)aVµν(y) − 2g(θθ)(σµ∂µλ̄(y))a

+ gθaVµ(y)
(a)V µ (b)(y)T (a)T (b) − i2gσµν d

a θdV
(a)
µ (y)V (b)

ν (y)T (a)T (b)

+ ig(θθ)σµ
aḃ
λ̄ḃ (a)(y)V (b)

µ (y)[T (a), T (b)] (3.25)

Yet we need to calculate the Lorentz scalar term W aWa. The semi-result is

W aWa(x)
∣∣∣
θθ

= i4g2(λ(a)σµ∂̄µλ
(b))(T ab + T ba)

+ 4g3(λ(a)σµλ̄(b))V (c)
µ

(
T a[b,c] + T [b,c]a

)

− g2(ηµρηνσ − ηµσηνρ + iεµνρσ)V (a)
µν V

(b)
ρσ T

ab

+ i2g3(ηµρηνσ − ηµσηνρ + iεµνρσ)V (a)
µν V

(b)
σ V (c)

ρ (T abc + T bca)

− 4g4(ηµρηνσ − ηµσηνρ + iεµνρσ)V (a)
µ V (b)

ν V (c)
σ V (d)

ρ T abcd

+ 4g2D(a)D(b)T ab (3.26)

where T ab = T (a)T (b), T [b,c] = T (b)T (c) − T (c)T (b), etc.

From the WȧW
ȧ
∣∣∣
θ̄θ̄

we would obtain a similar result. The only difference would be the
opposite signs standing by the terms containing iεµνρσ . Therefore these terms will not be
present in our final lagrangian.
As a last step we would like to make a trace. Before doing so we have to slightly modify
the last expression with the help of following equations

(ηµρηνσ − ηµσηνρ)V (a)
µν V

(b)
σ V (c)

ρ T abc = (V (a)
µν V

ν(b)V µ(c) − V (a)
µν V

µ(b)V ν(c))T abc

= (V (a)
µν V

ν(b)V µ(c))T a[b,c] (3.27)

(ηµρηνσ − ηµσηνρ)V (a)
µ V (b)

ν V (c)
σ V (d)

ρ T abcd =

= (V (a)
µ V (b)

ν V ν(c)V µ(d) − V (a)
µ V (b)

ν V µ(c)V ν(d))T abcd = −V (a)
µ V (b)

ν V µ(c)V ν(d))T ab[c,d]

= −1

2
(V (a)
µ V (b)

ν V µ(c)V ν(d) + V (a)
ν V (b)

µ V ν(c)V µ(d))T ab[c,d]

= −1

2
V (a)
µ V (b)

ν V µ(c)V ν(d)(T ab[c,d] + T ba[d,c]) = −1

2
V (a)
µ V (b)

ν V µ(c)V ν(d)T [a,b][c,d](3.28)

Now everything is prepared for writing down the final lagrangian.

3.2.3 The final lagrangian written in component fields

The component expansion of the supersymmetric and gauge invariant lagrangian for a
renormalizable nonabelian theory is

L = iλ(a)σµDµλ̄
(a) − 1

4
F (a)
µν F

(a) µν +
1

2
D(a)D(a) + i(ψ̄iσ̄

µ
Dµψi) + F ∗

i Fi

+ (Dµφi)
∗(Dµφi) + i

√
2gT

(a)
ij [φ∗i (λ

(a)ψj) − (λ̄(a)ψ̄i)φj ] + gD(a)T
(a)
ij φ

∗
iφj (3.29)
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where the covariant derivatives and the non-abelian field strength tensor are

Dµλ̄
(a) = ∂µλ̄

(a) − gfabcV (b)
µ λ̄(c)

F (a)
µν = ∂µV

(a)
ν − ∂νV

(a)
µ − gfabcV (b)

µ V (c)
ν

Dµψ = ∂µψ + igVµψ

Dµφ = ∂µφ+ igVµφ (3.30)

3.3 Implementing G = U(1)Y ⊗ SU(2)L ⊗ SU(3)C group

Generators of the Lie algebra G are

T =
Y

2
⊗ 1 ⊗ 1 + 1 ⊗ τ i

2
⊗ 1 + 1 ⊗ 1 ⊗ λa

2
(3.31)

We remark that the three parts of the generator T commutes among themselves.

The matrix vector superfield consists of the following three parts

2gV → 2g′V ′ + 2gV i + 2gsV
a (3.32)

Now the (θθ)(θ̄θ̄)-component from the component expansion of Φ†e2g
′V ′+2gV i+2gsV a

Φ will
lead to the same terms as in equations (3.19) - (3.24) but with gVµ replaced by g′V ′

µ +
gV i

µ + gsV
a
µ . This leads to the covariant derivatives of the fields φ,ψ given by

Dµψ = ∂µψ + ig′
1

2
Y V ′

µψ + ig
1

2
τ iV i

µψ + igs
1

2
λaV a

µ ψ

Dµφ = ∂µφ+ ig′
1

2
Y V ′

µφ+ ig
1

2
τ iV i

µφ+ igs
1

2
λaV a

µ φ (3.33)

The term e−VDae
V can be schematically written as

e−(V1+V2+V3)Dae
(V1+V2+V3) (3.34)

This expression will fall to three pieces because the Vi commutes with Vj (i 6= j) and
because the function eVi contains only terms with even number of Grassman variables
which enable us to use the standard Leibnitz rule when making derivation of products of
functions. Finally we are left with three identical terms in the lagrangian, one for each
group

iλ′σµDµλ̄
′ − 1

4
F ′
µνF

′ µν +
1

2
D′D′

iλiσµDµλ̄
i − 1

4
F iµνF

i µν +
1

2
DiDi

iλaσµDµλ̄
a − 1

4
F aµνF

a µν +
1

2
DaDa (3.35)

where each group has its own covariant derivative.



Chapter 4

MSSM theory

4.1 Lagrangian of the MSSM

In the previous chapter we have derived the supersymmetric lagrangian for general scalar,
spinor and vector fields. In this chapter we will put the fields that are already known
together with their predicted superpartners and suggested two Higgs doublets with their
superpartners into the theory. At the end we will derive the couplings that are important
by counting the width for the neutralino decay including only QCD corrections.

The MSSM field content is summarized in the following table (Tab. 4.1).

Superfield Particle Spin SU(3)
C
⊗ SU(2)

W
⊗ U(1)

Y
Superpartner Spin

V̂1 Bµ 1 (1, 1, 0) B̃ 1
2

V̂2 W i
µ 1 (1, 3, 0) W̃ i 1

2

V̂3 Gaµ 1 (8, 1, 0) g̃a 1
2

Q̂ Q = (uL, dL) 1
2 (3, 2, 1

3) Q̃ = (ũL, d̃L) 0

Û c U c = ūR
1
2 (3∗, 1,-4

3 ) Ũ c = ũ∗R 0

D̂c Dc = d̄R
1
2 (3∗, 1, 2

3 ) D̃c = d̃∗R 0

L̂ L = (νL, eL) 1
2 (1, 2, -1) L̃ = (ν̃L, ẽL) 0

Êc Ec = ēR
1
2 (1, 1, 2) Ẽc = ẽ∗R 0

Ĥ1 H1 = (H0
1 ,H

−
1 ) 0 (1, 2, -1) H̃1 = (H̃0

1 , H̃
−
1 ) 1

2

Ĥ2 H2 = (H+
2 ,H

0
2 ) 0 (1, 2, 1) H̃2 = (H̃+

2 , H̃
0
2 ) 1

2

Table 4.1: Particle content of the MSSM.

The names for the new fields are as follows. The superpartners to gauge bosons Bµ,W i
µ, G

a
µ

are called gauginos and carry the spin 1
2 . Gluinos are fermionic superpartners to gluons,

17
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the other gauginos combine to form photino, Z-ino and the W-inos. Superpartners are
denoted by tilde.

The second thing we want to mention in connection with the table is the bar upon the
term eR, dR, uR. This bar indicates that we will substitute the Weyl fermion with undotted
indices into the lagrangian. In the appendix we can see that the right-handed part of the
Dirac spinor ψR is in fact the dotted spinor.

Finally, in supersymmetric theories one needs two complex Higgs doublets to give mass to
both the up-type and down-type fermions. This is because the superpotential must consist
of the combinations of chiral superfields that are chiral. We cannot simply use the complex
conjugate of the Higgs doublet as in the Standard Model otherwise the θθ-component of
superpotential would not transform into a total divergence.

The lagrangian of the MSSM can be written in the following way [10]

LMSSM = Lkinetic − VY − VF − VD − VG̃ψψ̃ + Lsoft (4.1)

where the Lkinetic contains the standard kinetic terms including gauge interactions with
the gauge bosons. The terms VY , VF , VD, VG̃ψψ̃ stand for all interaction that are allowed in
the supersymmetric theory and the Lsoft includes the soft supersymmetry breaking terms.

Superpotential

W = −εij
[
heĤ

i
1L̂

jÊc + hdĤ
i
1Q̂

jD̂c + huĤ
j
2Q̂

iÛ c − µĤ i
1Ĥ

j
2

]
+ h.c. (4.2)

The εij tensor is still the same tensor we use from the beginning, that is, ε12 = −1. By
writing the superpotential we have suppressed possible generation indices on superfields.
The superpotential give rise to two kind of interactions described by the Yukawa potential
VY and the so-called F-term potential VF (see equations (2.28) and (2.29)).

The Yukawa potential

The Yukawa potential is obtained by substituting two of the superfields by their fermionic
content and the remaining superfield (if something remains) by its scalar content. The
result is

VY = −εij
[
heH

i
1L

jEc + hdH
i
1Q

jDc + huH
j
2Q

iU c − µH̃ i
1H̃

j
2

]

− εij
[
heH̃

i
1L

jẼc + hdH̃
i
1Q

jD̃c + huH̃
j
2Q

iŨ c
]

− εij
[
heH̃

i
1L̃

jEc + hdH̃
i
1Q̃

jDc + huH̃
j
2Q̃

iU c
]
+ h.c. (4.3)

The F-term potential

The F-term potential arises after using the Lagrange-Euler equations of motion for the
auxiliary field F and substituting them back into the lagrangian. We will demonstrate this
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later when discussing the particle spectrum of the MSSM theory. The F-term superpoten-
tial is then given by

VF =
∑

i

∣∣∣∣∣
∂W (φ)

∂φi

∣∣∣∣∣

2

(4.4)

where φi are the scalar components of the superfields.

The D-term potential

This potential comes, analogously as in the case of F-term potential, from eliminating
the auxiliary field D using equation of motion and substituting back into the lagrangian.
The D-term potential is given by

VD =
1

2

∑

a

DaDa (4.5)

where
Da = −gaφ∗iT

(a)
ij φj (4.6)

The φi are the scalar components of the superfields and the T (a)( (a) ↔ ′, i, a) are the
generators of the particular gauge symmetry.

The VG̃ψψ̃ potential

This potential comes from the equations (3.22) and (3.23). It represents an interaction
of gauginos.

VG̃ψψ̃ = i
√

2gT
(a)
ij (λ̄(a)ψ̄i)φj − i

√
2gT

(a)
ij φ∗i (λ

(a)ψj) (4.7)

where φ,ψ are the scalar, resp. fermionic components of the chiral superfield and λ(a) is
the gaugino field.

The last term in the full MSSM-lagrangian includes soft supersymmetric breaking terms.
The word soft means that we do not consider any dimensionless SUSY-breaking couplings.

−Lsoft = m2
H1

|H1|2 +m2
H2

|H2|2 −m2
12εij(H

i
1H

j
2 +H†i

1 H
†j
2 ) +

1

2
mg̃g̃

ag̃a +
1

2
MW̃ iW̃ i

+
1

2
M ′B̃B̃ +M2

Q̃
|q̃L|2 +M2

Ũ
|ũcR|2 +M2

D̃
|d̃cR|2 +M2

L̃
|l̃L|2 +M2

Ẽ
|ẽcR|2

− εij
(
heAeH

i
1L̃

jẼc + hdAdH
i
1Q̃

jD̃c + huAuH
j
2Q̃

iŨ c + h.c.
)

(4.8)

where we have introduced the SUSY-breaking mass parameters m2
H1
,m2

H2
,m2

12,mg̃,M,
M ′,M2

Q̃
,M2

Ũ
,M2

D̃
,M2

L̃
,M2

Ẽ
as well as the SUSY-breaking trilinear scalar couplings Ae, Au,

Ad.

4.2 Particle spectrum of the MSSM

4.2.1 Higgs sector

The MSSM theory needs two Higgs doublets. Their hypercharges are: YH1
= −1, YH2

= 1.
The doublet H2 is responsible for masses of the up-type fermions and the doublet H1 for
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masses of the down-type fermions.

The potential for the Higgs field after expanding the lagrangian is

V = m2
1|H1|2 +m2

2|H2|2 −m2
12εij(H

i
1H

j
2 +H†i

1 H
†j
2 )

+
1

8
(g2 + g′2)(|H1|2 − |H2|2)2 +

1

2
g2|H†

1H2|2 (4.9)

where m2
1,2 = m2

H1,2
+ |µ|2.

Now we will show the derivation of the terms containing the constant µ. The relevant
terms are

W ↔ εij µ (H i
1F

j
H2

+ F iH1
Hj

2) + h.c. =

= −µH0
1FH0

2
+ µH−

1 FH+

2

− µFH0
1
H0

2 + µFH−
1

H+
2

F ∗
i Fi|L ↔ F ∗

H0
1

FH0
1

+ F ∗
H−

1

FH−
1

+ F ∗
H+

2

FH+

2

+ F ∗
H0

2

FH0
2

(4.10)

After using the Euler-Lagrange equation of motion for FH−
1

, F ∗
H−

1

we get

F ∗
H−

1

= −µH+
2 + . . . , FH−

1

= −µ∗H+∗
2 + . . . (4.11)

The dots indicate that the previous two equations are incomplete. There is another term
in the superpotential that contains the FH−

1

field as well as the fields associated with the
electron and therefore has no contribution to the Higgs potential.
Substituting back we obtain the following term to LMSSM

−FH−
1

F ∗
H−

1

= −|µ|2|H+
2 |2 + . . . (4.12)

Analogously we obtain another terms −|µ|2|H0
2 |2,−|µ|2|H0

1 |2 and − |µ|2|H−
1 |2.

Next we will derive the terms containing the gauge couplings g, g′. The relevant terms
that come from the final lagrangian (3.29) are:

1

2
DBDB +

1

2
DW iDW i + g′DB(H1)

∗
a

(
Y

2

)

ab

(H1)b + g′DB(H2)
∗
a

(
Y

2

)

ab

(H2)b

+g
∑

i

DW i(H1)
∗
a

(
τ i

2

)

ab

(H1)b + g
∑

i

DW i(H2)
∗
a

(
τ i

2

)

ab

(H2)b (4.13)

The E-L equation of motion for the field DB is

DB =
g′

2
(|H1|2 − |H2|2) + . . . (4.14)

And after substituting back to final lagrangian we obtain the following term to LMSSM

−1

2
DBDB = −1

8
g′2(|H1|2 − |H2|2)2 + . . . (4.15)
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The E-L equation of motion for the field DW i has the following form

DW i = −g
(

(H∗
1 )a

(
τ i

2

)

ab

(H1)b + (H∗
2 )a
(τ i

2

)
ab

(H2)b

)
+ . . . (4.16)

And after substituting back to final lagrangian we obtain the following term to LMSSM

−1

2
DW iDW i = −1

2
g2|H†

1H2|2 −
1

8
g2(|H1|2 − |H2|2)2 + . . . (4.17)

where we have used the identity
∑
i(
τ i

2 )ab(
τ i

2 )cd = 1
2(δadδbc − 1

2δabδcd)

Both neutral Higgs boson fields acquire a non-vanishing vacuum expectation value (VEV)

〈H1〉 =

(
v1√
2

0

)
, 〈H2〉 =

(
0
v2√
2

)
(4.18)

We will parametrize the doublets in the following way

H1 ≡
(
H0

1

H−
1

)
=

(
(v1 + φ0

1 + iχ0
1)/

√
2

φ−1

)
, YH1

= −1 (4.19)

H2 ≡
(
H+

2

H0
2

)
=

(
φ+

2

(v2 + φ0
2 + iχ0

2)/
√

2

)
, YH2

= +1 (4.20)

The gauge bosons are made massive after electro-weak symmetry breaking. Because their
masses are functions of v1, v2, their experimentally measured values can fix one of the VEVs
as can be seen from relations

m2
Z =

g2 + g′2

4
(v2

1 + v2
2), m2

W =
g2

4
(v2

1 + v2
2) (4.21)

v2 ≡ (v2
1 + v2

2) =
4m2

Z

g2 + g′2
≈ (246GeV)2 (4.22)

The other VEV remains a free parameter of the theory. Conventionally, people do not
work with this parameter but introduce the angle β which is defined as

tanβ ≡ v2
v1

≥ 0, 0 ≤ β ≤ π

2
(4.23)

However, tanβ is not entirely a free parameter. The conditions for the minimum of the
Higgs potential

∂V

∂H0
1

∣∣∣∣∣
〈H0

n〉=vn

=
∂V

∂H0
2

∣∣∣∣∣
〈H0

n〉=vn

= 0 (4.24)

restrict the parameters tanβ,m2
H1
,m2

H2
, |µ|2 and m2

12 by the following equations

m2
1 = −m2

12tanβ − 1

2
m2
Zcos2β (4.25)

m2
2 = −m2

12cotβ +
1

2
m2
Zcos2β (4.26)
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The Higgs mass matrix can generally be written as

M2,Higgs
ij =

1

2

∂2V

∂Hi∂Hj

∣∣∣∣∣
〈H0

n〉=vn

(4.27)

This mass matrix has the block-diagonal form. The particular 2× 2 blocks can separately
be diagonalized as

(
H0

h0

)
=

(
cosα sinα
−sinα cosα

)(
φ0

1

φ0
2

)
(4.28)

(
G0

A0

)
=

(
−cosβ sinβ
sinβ cosβ

)(
χ0

1

χ0
2

)
(4.29)

(
G±

H±

)
=

(
−cosβ sinβ
sinβ cosβ

)(
φ±1
φ±2

)
(4.30)

The G0, G± are massless Goldstone bosons, H0, h0, A0 are three neutral Higgs bosons,
and H± are two charged Higgs bosons. The three free parameters of the Higgs sector are
conventionally chosen to be

mA0, tan β, µ (4.31)

The other parameters of the Higgs sector expressed with the help of these three parameters
are

m2
h0,H0

=
1

2

[
m2
A0 +m2

Z ∓
√

(m2
A0 +m2

Z)2 − 4m2
A0m2

Zcos2β

]
(4.32)

m2
H± = m2

A0 +m2
W (4.33)

tan 2α = tan 2β
m2
A0 +m2

Z

m2
A0 −m2

Z

(4.34)

4.2.2 The SM fermions

Our aim is to obtain the Dirac lagrangian for fermions known from the Standard Model.
As an example we will derive the desired lagrangian for electrons. There are two superfields
at our disposal, superfield L̂ and the superfield Êc. When we substitute their fermionic
content (eL, ēR - both are Weyl spinors with undotted indices) into the final lagrangian
(3.29) instead of ψ we obtain the following two terms

iēLσ̄
µ
DµeL + i¯̄eRσ̄

µ
DµēR = iēLσ̄

µ
DµeL + iēRσ

µ
DµeR (4.35)

which is the massless part of the Dirac equation that agrees with the Peskin-Schroeder
notation. The mass term of the electron appears after the Higgs bosons get their VEVs

L ↔ −VY → εijheH
i
1L

jEc + h.c. = −he
v1√
2
(eLēR + ēLeR) (4.36)

The mass term is of correct sign provided that the constants he, v1 are positive.
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4.2.3 Gauginos

In this subsection we will treat as an example the gluinos case. Our aim is to check if
the terms containing gluinos in our lagrangian agree with the terms given by Majorana
lagrangain. We said Majorana because there are no two superfields as was the case of the
electrons. We remark that gauge bosons are themselves antiparticles and the same applies
for their superpartners - gauginos. The gluino written as a Majorana spinor is

g̃a =

(
−iλa
iλ̄a

)
, a = 1, 2 . . . 8 (4.37)

Then the Majorana lagrangian yields

LM =
i

2
¯̃g
a
γµDµg̃

a − 1

2
mg̃

¯̃g
a
g̃a = iλaσµDµλ̄

a +
1

2
mg̃(λ

aλa + λ̄aλ̄a) (4.38)

The first term agrees with the first term in the final lagrangian (3.29). The second term
agrees with the soft breaking term in the Lsoft.

4.2.4 Neutralino sector

The fermionic superpartners of the gauge bosons (gauginos) and the superpartners of the
Higgs bosons (higgsinos) mix to form mass eigenstates called neutralinos (particles with
zero charge) and charginos (charged particles).

In the interaction base on can combine the four neutral Weyl states as

ψ0
j = (B̃, W̃ 0

3 , H̃
0
1 , H̃

0
2 ) (4.39)

where the B̃, W̃ 0
3 ↔ −iλ. The mass lagrangian written in terms of the vector ψ0 is

L = −1

2
(ψ0)TY ψ0 + h.c. (4.40)

where the neutralino mass matrix Y is

Y =




M ′ 0 −mZsW cosβ mZsW sinβ
0 M mZcW cosβ −mZcW sinβ

−mZsW cosβ mZcW cosβ 0 −µ
mZsW sinβ −mZcW sinβ −µ 0


 (4.41)

The letter W stands for the Weinberg angle and the sW , cW are short forms of the sine
and cosine of this angle. We now get little back and expand the lagrangian (4.40). Its
expanded form yields following terms

L = −1

2
M ′B̃B̃ − 1

2
MW̃ 0

3 W̃
0
3 + µH̃0

1H̃
0
2 −mZ cW cosβ W̃ 0

3 H̃
0
1

+ mZ cW sinβ W̃ 0
3 H̃

0
2 +mZ sW cosβ B̃H̃0

1 −mZ sW sinβ B̃H̃0
2 (4.42)
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The first two are from Lsoft, the third comes from the Yukawa potential VY and the rest
come from the potential VG̃ψψ̃ where for example

L ↔ −VG̃ψψ̃ : i
√

2g′
[
v∗1√
2

(
−1

2

)
λB̃H̃

0
1 +

v∗2√
2

(
1

2

)
λB̃H̃

0
2

]
+ . . .

= −imZ sW cosβ λB̃H̃
0
1 + imZ sW sinβ λB̃H̃

0
2 + . . . (4.43)

Due to the Majorana nature of the neutralinos, the mass matrix can be diagonalised using
only one rotation matrix Z

ZY Z−1 = diag (mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
), |mχ̃0

1
| ≤ |mχ̃0

2
| ≤ |mχ̃0

3
| ≤ |mχ̃0

4
| (4.44)

where we assume that the mixing matrix is real and we also allow the eigenvalues to be
negative.
The 4-component Majorana spinors for the neutralino fields can be constructed as

χ̃0
i ≡ Zij

(
ψ0
j

ψ̄0
j

)
(4.45)

4.2.5 Chargino sector

The superpartners of the charged gauge bosons and charged Higgs bosons mix to create
charginos. In the Weyl representation we have

ψ+ = (W̃+, H̃+
2 ) ψ− = (W̃−, H̃−

1 ) (4.46)

where W± = 1√
2
(W 1 ∓W 2) and W± ↔ −iλ±. The mass lagrangian in this basis is

L = −1

2
(ψ+, ψ−)

(
0 XT

X 0

)(
ψ+

ψ−

)
+ h.c (4.47)

where the chargino mass matrix is

X =

(
M

√
2mW sinβ√

2mW cosβ µ

)
(4.48)

This matrix can be diagonalized by using two unitary matrices U and V .

UXV −1 = diag (mχ±
1

,mχ±
2

), |mχ±
1

| ≤ |mχ±
2

| (4.49)

We use a convention in which the matrices U, V are real. It implies that the eigenvalues
can be negative. The Dirac spinor is constructed as

χ̃+
i ≡

(
Vij ψ

+
j

Uij ψ̄
−
j

)
(4.50)

The mass eigenvalues are given by

m2
χ̃±

1,2

=
1

2

[
M2 + µ2 + 2m2

W ∓
√

(M2 + µ2 + 2m2
W )2 − 4(m2

W sin2β − µM)2
]

(4.51)
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4.2.6 Sfermion sector

The sfermion mass matrix has its origin in the F-term, D-term potentials, SUSY breaking
potential and in the trilinear couplings where the neutral Higgs fields get their VEVs. As
an example we will derive the mass matrix for selectrons. Finally we will write down the
general mass matrix for all sfermions, squarks including.

The terms that contribute to the selectron mass matrix are

Lsoft|mass terms : −M2
L̃
|l̃L|2 −M2

Ẽ
|ẽcR|2 (4.52)

Lsoft|tril. coup. : εijheAeH
i
1L̃

jẼc + h.c = −heAe
v1√
2
ẽLẽ

∗
R + h.c (4.53)

F − term: − εij(heH
i
1L

jEc − µH i
1H

j
2) (4.54)

→ −|he|2
v2
1

2
(|eL|2 + |eR|2) + heµ

v2√
2
ẽLẽ

∗
R + h.c (4.55)

D − term: − 1

8
g2
[
L̃∗
aτ
i
abL̃b + (H1)

∗
aτ
i
ab(H1)b + (H2)

∗
aτ
i
ab(H2)b + . . .

]2

→ −1

8
g2
[
− ẽ∗LẽL +

v2
1

2
− v2

2

2
+ . . .

]2
(4.56)

−1

8
g′2
[
ẽ∗LY ẽL + ẽRY ẽ

∗
R +H0 ∗

1 Y H0
1 +H0 ∗

2 Y H0
2 + . . .

]2

→ −1

8
g′2
[
− |ẽL|2 + 2|ẽR|2 −

v2
1

2
+
v2
2

2
+ . . .

]2
(4.57)

We suppose that the parameters µ, he are real. Now it is not complicated to make up the
selectron mass matrix with the help of previous equations. However, we will not do that
but write down the general form for the sfermion mass matrix instead and the agreement
in the selectron case can be easily verified

M2
f̄ =

(
m2
f̄L

afmf

afmf m2
f̄R

)
(4.58)

where

m2
f̄L

= M2
{Q̃,L̃} + (I3L

f − efs
2
W )cos2βm2

Z +m2
f (4.59)

m2
f̄R

= M2
{Ũ ,D̃,Ẽ} + efs

2
W cos2βm2

Z +m2
f (4.60)

af = Af − µ(tanβ)−2I3L
f (4.61)

The term I3L
f denotes the third component of the weak isospin of the fermion, ef denotes

the electric charge in terms of the elementary charge e. The other terms were presented
earlier.

We have to diagonalize the matrix in order to obtain the mass eigenstates. We intro-
duce the mixing angle θf̃ . The diagonalization proceeds as follows

M2
f̃

=

(
m2
f̃L

afmf

afmf m2
f̃R

)
=
(
Rf̃
)†
(
m2
f̃1

0

0 m2
f̃2

)(
Rf̃
)

(4.62)
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where (
Rf̃
)

=

(
cosθf̃ sinθf̃
−sinθf̃ cosθf̃

)
(4.63)

The relation between the mass eigenstates f̃i and the interaction eigenstates f̃α is

f̃i =

(
f̃1

f̃2

)
= Rf̃ .

(
f̃L
f̃R

)
= Rf̃iαf̃α, f̃α =

(
f̃L
f̃R

)
= (Rf̃ )T .

(
f̃1

f̃2

)
= Rf̃iαf̃i (4.64)

The mass eigenvalues and the mixing angle are

m2
f̃1,2

=
1

2

(
m2
f̃L

+m2
f̃R

∓
√

(m2
f̃L

−m2
f̃R

)2 + 4a2
fm

2
f

)
(4.65)

cosθf̃ =
−afmf√

(m2
f̃L

−m2
f̃1

)2 + a2
fm

2
f

(0 ≤ θf̃ < π) (4.66)

4.3 Couplings important for the neutralino decay

4.3.1 Neutralino-Fermion-Sfermion couplings

The relevant lagrangian comes from the two potentials, the Yukawa potential VY and the
potential VG̃ψψ̃. Here are as an example two terms that arise from this potentials for the
case of sbottom and bottom quark

L ↔ −VY : −hbH̃0
1bLb̃

∗
R + . . . = −¯̃χ

0
khbZk3R

f̃
i2PLb b̃

∗
i + . . .

L ↔ −VG̃ψψ̃ : −
√

2g′ ¯̃Bb̄L
Y

2
b̃L + . . . = −

√
2gtan θW b̄(eb − I3L

b )Rf̃i1PRχ̃
0
kf̃i (4.67)

For the neutralino-fermion-sfermion couplings the whole lagrangian reads

L = −f̄
(
af̃ikPR + bf̃ikPL

)
χ̃0
kf̃i − ¯̃χ

0
k

(
af̃ikPL + bf̃ikPR

)
f f̃∗i (4.68)

where
af̃ik = hfZkxR

f̃
i2 + gf fLkR

f̃
i1, bf̃ik = hfZkxR

f̃
i1 + gf fRkR

f̃
i2 (4.69)

f fLk =
√

2((ef − I3L
f )tan θwZk1 + I3L

f Zk2), f fRk = −
√

2ef tan θwZk1 (4.70)

where x takes the values {3, 4} for {down, up} - type case, respectively

f

χ̃0
k

f̃i

f̃i−i
(
af̃ikPL + bf̃ikPR

)
−i
(
af̃ikPR + bf̃ikPL

)

f

χ̃0
k
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4.3.2 Gluon-Fermion-Fermion coupling

The relevant lagrangian for the gluon - quark coupling is

L = −gsT astGaµq̄sγµqt (4.71)

Gaµ

qt

qs

−igsT astγµ

4.3.3 Gluon-Sfermion-Sfermion coupling

The lagrangian for the gluon - quark coupling comes from the term (Dµφi)
†(Dµφi)

L = −igsGaµT astq̃∗i,s
↔
∂µ q̃i,t (4.72)

where the
↔
∂µ is defined by: A

↔
∂µB = A(∂µB) − (∂µA)B

Gaµ

q̃j,t

q̃i,s

−igsT ast(p1 + p2)δij

���

@@I

The interaction of the squark with the gluon does not include mixing of the scalar particles.

4.3.4 Gluino-Fermion-Sfermion coupling

The lagrangian for this coupling comes from the term −VG̃ψψ̃

L = −
√

2gsT
a
st[(q̄sPRg̃

aq̃L,t − q̄sPLg̃
aq̃R,t) + (¯̃g

a
PLqtq̃

∗
L,s − ¯̃g

a
PRqtq̃

∗
R,s)]

= −
√

2gsT
a
st[q̄s(R

q̃
iLPR −Rq̃iRPL)g̃aq̃i,t + ¯̃g

a
(Rq̃iLPL −Rq̃iRPR)qtq̃

∗
i,s (4.73)

The relative minus sign comes from the fact that the field qR belongs to conjugate repre-
sentation, that means, is SU(3) antitriplet.

qt

g̃a

q̃i,s

−
√

2igsT
a
st(R

q̃
iLPL −Rq̃iRPR)
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q̃i,t

g̃a

qs

−
√

2igsT
a
st(R

q̃
iLPR −Rq̃iRPL)

The arrow on the gluino line indicates whether the gluino participates on the vertex as ¯̃g
a

(out) or as g̃a (in).

4.3.5 Four Sfermions coupling

In this subsection we will focus on the coupling that contains the strong coupling constant
gs. It suffices then to consider only the D-term potential with

Da = gs
(
t̃∗L,sT

a
stt̃L,t + b̃∗L,sT

a
stb̃L,t − t̃R,sT

a∗
st t̃

∗
R,t − b̃R,sT

a∗
st b̃

∗
R,t

)
(4.74)

The minus sign appears because the superfields Ũ , D̃ belong to conjugate representation
3̄ and therefore transform with −T a∗st . We remark that we now consider only the third
generation of quarks.
When we define the following matrix

Aαij = Rαi1R
α
j1 −Rαi2R

α
j2 =

(
cos2θq̃α −sin2θq̃α
−sin2θq̃α −cos2θq̃α

)
(4.75)

the Da can be written in a more compact way

Da = gsT
a
st

∑

α=1,2

Aαij q̃
α∗
i,s q̃

α
j,t (4.76)

where α = (1,2) corresponds to (Stopsector, Sbottomsector).

The relevant lagrangian for the four sfermions coupling has then the following form

L = −1

2
g2
sT

a
rsT

a
tu

∑

α,β=1,2

AαijA
β
klq̃

α∗
i,r q̃

α
j,sq̃

β∗
k,tq̃

β
l,u (4.77)

q̃αi,r

q̃αj,s

q̃βk,t

q̃βl,u

−ig2
s

(
T arsT

a
tuA

α
ijA

β
kl + δαβT

a
ruT

a
tsA

α
ilA

α
kj

)

where we sum over the index a but not over the index α.



Chapter 5

Renormalization of the MSSM

5.1 Dimensional regularization and reduction

When we want to calculate processes in Quantum field theory at higher than tree level we
usually encounter divergencies. Then it is inevitable to regularise the divergent parts and
after the renormalization of the theory the formal infinite parts are subtracted.

There are two types of divergencies. The first one is called an infrared divergence (IR). It
arises as soon as the massless particle appears in the loop. In this work it will be gluon.
The way how to tackle the problem is to introduce a small nonzero gluon mass. Then after
calculating additional graphs that represent the radiation of the real gluon the final result
will be independent from gluon mass and therefore IR convergent.

The second type of divergence is called ultraviolet (UV). It is caused by the divergent
behaviour of the loop integrals as the integration variable approaches infinity. The sim-
plest way how to get rid of the infinity provides the so-called cut-off scheme. This method
introduces a cut Λ on the energy. With this technique are the Feynman amplitudes finite
but the theory looses its Poincaré invariance. Better way was introduced by ’t Hooft and
Veltman [11]. They realized that by lowering the dimension of an initially divergent in-
tegral it can be made finite. We called this method dimensional regularization (DREG).
Everything is calculated in D-dimensional space where D = 4 − 2ε is a complex number.
Consequently, the divergent parts arises as a pole of the dimensional parameter D at ε = 0.
The whole procedure is described in [11], [12], [13].

A general one loop integral can be written as

TNµ1...µM
(p1, ..., pN−1,m0, ...,mN−1) =

(2πµ)4−D

iπ2∫
dDq

qµ1
...qµM

[q2 −m2
0 + iε][(q + p1)2 −m2

1 + iε]...[(q + pN−1)2 −m2
N−1 + iε]

(5.1)

where the convention for the momenta are shown in the following picture. The parameter
µ serves for retaining the initial dimensionality of the integral.

29
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p1 q −pN−1

q + pN−1q + p1
m0

m1

m2

p2 − p1

q + p2

According to the number of particles in a loop we differentiate the integrals of type A,
B, C, D and higher. The first three scalar integrals are denoted as

T 1 ≡ A0(m
2
0) (5.2)

T 2 ≡ B0(p
2
1,m

2
0,m

2
1) (5.3)

T 3 ≡ C0(p
2
1, (p1 − p2)

2, p2
2,m

2
0,m

2
1,m

2
2) (5.4)

The other tensor integrals Bµ, Bµν , Cµ, Cµν etc. can be calculated from the scalar ones
trough the procedure called tensor reduction. We refer to [14]. The divergence is contained
in the parameter ∆ which is defined as

∆ =
1

ε
− γE + ln 4π (5.5)

where γE = 0.57721 is the known Euler-Mascheroni constant. The UV-divergent parts of
the loop integrals are listed in the following Table 5.1. We remark that only incomplete
(but sufficient for our calculations) set is presented.

Integral UV divergent part

A0(m
2) → m2∆

B0 → ∆

B1 → −1
2∆

B00(k
2,m2

0,m
2
1) → −1

4(k2/3 −m2
0 −m2

1)∆

B11 → 1
3∆

C00 → 1
4∆

Table 5.1: UV divergent coefficients of the Passarino-Veltman integrals

The IR divergent parts are shown in the Table 5.2. The new parameters presented there
are

κ = κ(m2
0,m

2
1,m

2
2) =

√
λ(m2

0,m
2
1,m

2
2) (5.6)

β0 =
m2

0 −m2
1 −m2

2 + κ

2m1m2
(5.7)
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Integral IR divergent part

Ḃ0(m
2, λ2,m2) = Ḃ0(m

2,m2, λ2) → − lnλ2

2m2

Ḃ1(m
2,m2, λ2) → lnλ2

2m2

Ḃ1(m
2, λ2,m2) → 0

Re[C0(m
2
1,m

2
0,m

2
2, λ

2,m2
1,m

2
2)] → − lnβ0

κ lnλ2

Table 5.2: IR divergent coefficients of the Passarino-Veltman integrals

In the Introduction we have mentioned that in supersymmetic models superfields posses
equal number of fermionic and bosonic degrees of freedom. But when we work in DREG
this no more holds. The reason is that the vector fields become D-dimensional and cannot
be combined with its fermionic partner to a superfield. This leads to the need of a new
regularization scheme. Such was introduced by the W.Siegel [15] and is called dimensionaal
reduction (DRED). In this scheme one still calculates the integrals in D dimensions but
the vector fields are kept 4-dimensional. At one loop level when calculating integrals the
difference between DREG and DRED can be seen only in the finite terms.

5.2 Renormalization of fermions

In this section we are going to renormalize wave function of a fermion field as well as mass
of a fermion. We use the multiplicative renormalization where the bare parameters are
split to the renormalized parameters and their counterterms. This scheme is described in
[16]. We will not consider the mixing of the fermions because we will not come across
the situation in calculating neutralino decay which will require the mixing. The bare
parameters go to the following terms

f0 → (1 +
1

2
δZLPL +

1

2
δZRPR)f (5.8)

f̄0 → f̄(1 +
1

2
δZL†PR +

1

2
δZR†PL) (5.9)

m0 → m+ δm (5.10)

The parameter m is the renormalized mass and as we know that the bare mass m0 is in
fact an infinite parameter it follows that the countertem is as well. The f is the renor-
malized wave function and is connected to the bare one through the relation f0 →

√
Zf .

The original bare Dirac’s lagrangian splits to the formally identical lagrangian but with
renormalized fields and to the counterterms

f̄0(i6∂ −m)f0 → f̄(i6∂ −m)f

+ f̄ 6p(1
2
δZL†PL +

1

2
δZR†PR)f −mf̄(

1

2
δZL†PR +

1

2
δZR†PL)f

+ f̄(6p −m)(
1

2
δZL†PL +

1

2
δZR†PR)f − δmf̄f (5.11)

We have obtained the additional Feynmam rule for the counterterm vertex which is con-
ventionally denoted by a cross
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i6p(1
2
δZL†PL +

1

2
δZR†PR) + i(6p−m)(

1

2
δZLPL +

1

2
δZRPR)

−im(1
2δZ

L†PR + 1
2δZ

R†PL) − iδm = i δΓ(p, p)

- �

The renormalized Green function is connected with the two point function Γ̂ through
the following relation

Ĝ = iS(p) + i[S(p)Π̂(p2)S(p)] + . . . = iS(p)[−iΓ̂]iS(p) (5.12)

where only one particle irreducible loop diagrams enter into the series. Π̂(p2) is the renor-
malized self-energy and iS(p) is the fermionic propagator i(6p −m)−1. The renormalized
amplitude is defined by the following picture

= + +

iū(p)Γ̂(−p, p)u(p) = iū(p)Γ(−p, p)u(p) + iū(p)δΓ(−p, p)u(p)

iū(p)Γ̂(−p, p)u(p) = iū(p)(6p −m)u(p) + iū(p)Π̂(p2)u(p) = M

The renormalized self-energies Π̂(p2) can be further decomposed to the following parts

Π̂(p2) = 6pPLΠ̂L(p2) + 6pPRΠ̂R(p2) + Π̂S,L(p2)PL + Π̂S,R(p2)PR (5.13)

They consist of divergent loop diagrams and the corresponding counterterms as follows

Π̂L/R = ΠL/R +
1

2

(
δZL/R + δZL/R†

)
(5.14)

Π̂S,L/R = ΠS,L/R − 1

2
m
(
δZL/R + δZR/L†

)
− δm (5.15)

To fix the mass-counterterm we use the following on-shell renormalization condition for
the physical mass of the fermion (the physical mass of the particle is taken to be the pole
of the propagator)

R̃eΓ̂(p)u(p)
∣∣∣
p2=m2

= 0 (5.16)

where R̃e means taking the real part from the loop integrals only. From the previous
condition we obtain two following relations

PR : mΠL + ΠS,R +
1

2
m(δZL − δZR) − δm = 0 (5.17)

PL : mΠR + ΠS,L +
1

2
m(δZR − δZL) − δm = 0 (5.18)

By summing the two relations and dividing the sum by two we come to the final expression
for the mass countertem

δm =
1

2
R̃e
(
mΠL(m2) +mΠR(m2) + ΠS,L(m2) + ΠS,R(m2)

)
(5.19)
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The renormalization condition for the wave function (the residuum of the propagator by
6p = m equals one) reads

lim
p2→m2

1

6p−m
R̃eΓ̂(p)u(p) = u(p) (5.20)

Substituting back for the Γ̂ after some small modifications the left hand side becomes

PL :
[
ΠL(m2) +

1

2
δZL +

1

2
δZL† + lim

p2→m2

1

6p−m

(
mΠL(p2) +m

1

2
δZL†

ΠS,L(p2) −m
1

2
δZR† − δm

)]
u(p) (5.21)

PR :
[
ΠR(m2) +

1

2
δZR +

1

2
δZR† + lim

p2→m2

1

6p−m

(
mΠR(p2) +m

1

2
δZR†

ΠS,R(p2) −m
1

2
δZL† − δm

)]
u(p) (5.22)

After substituting (5.17) to the first equation and (5.18) to the second, rewriting (6p−m)−1

to 6p+m
p2−m2 and finally using the relation ∂f(6p)

∂p2
= 6p

2m2

∂f(6p)
∂ 6p we obtain the relations for the

wave function counterterm we were looking for

δZL/R = R̃e
{
− ΠL/R(m2) +

1

2m

(
ΠS,L/R(m2) − ΠS,R/L(m2)

)

− ∂

∂p2

[
m2
(
ΠL/R(p2) + ΠR/L(p2)

)
+m

(
ΠS,L/R(p2) + ΠS,R/L(p2)

)]∣∣∣
p2=m2

}
(5.23)

5.3 Renormalization of scalars

The renormalization of scalars proceeds in an analogous way as in the case of fermions.
But this time we will consider the mixing of the scalars too as we will need it later in our
calculation of the decay. The bare parameters (on the left) consist of the following terms

f̃i → (δij +
1

2
δZij)f̃j (5.24)

f̃∗j → f̃∗k (δkj +
1

2
δZ∗

jk) (5.25)

m2
i → m2

i + δm2
i (5.26)

The original bare lagrangian consists of the two parts - lagrangian containing renormalized
fields and their masses and the lagrangian containing counterterms

∂µf̃
∗
i ∂

µf̃i −m2
i f̃

∗
i f̃i → ∂µf̃

∗
i ∂

µf̃i −m2
i f̃

∗
i f̃i +

1

2
(δZij + δZ∗

ji)(∂µf̃
∗
i )(∂

µf̃j)

− 1

2
(m2

i δZij +m2
jδZ

∗
ji)f̃

∗
i f̃j − δm2

i δij f̃
∗
i f̃j (5.27)

The renormalized amplitude in the case of sfermions is defined in the following picture
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i j
= + +

iΓ̂ij(p,−p) = i(p2−m2
i )δij + iΠ̂ij = M

The renormalized self-energy consists of divergent loop diagrams and counterterms

Π̂ij = Πij +
1

2
(p2 −m2

i )δZij +
1

2
(p2 −m2

j)δZ
∗
ji − δijδm

2
i (5.28)

The on-shell renormalization conditions for the scalars are as follows

R̃eΓ̂ij(p2)
∣∣∣
p2=m2

j

= 0 lim
k2→m2

i

R̃eΓ̂ii(p2)

k2 −m2
i

= 1 (5.29)

These conditions restrict the counterterms to be

δm2
i = R̃eΠii(m

2
i ) (5.30)

δZij =
2

m2
i −m2

j

R̃eΠij(m
2
j ) i 6= j (5.31)

δZii = −R̃e
∂

∂p2
Πii(p

2)
∣∣∣
p2=m2

i

(5.32)

The wave function and mass of the scalars is not everything what has to be renormalized.
There is another parameter one cannot forget - mixing angle θf̃ . The counterterm to the
mixing matrix is set to cancel the anti-hermitian part of the wave function correction

δRf̃ij =
2∑

k=1

1

4
(δZik − δZki)R

f̃
kj (5.33)



Chapter 6

The neutralino decay

6.1 Tree level

The Feynnman diagram for the neutralino decay to a fermion and a sfermion is

χ̃0
k

p3

p2 f

f̃ip1

0
0 : − i

(
af̃ikPR + bf̃ikPL

)

In this chapter we fix the indices i, k which designate neutralino and sfermion partici-
pated in the process. The amplitude for this decay within a tree level without considering
color of particles is

M0 = − i ū(p2)
(
af̃ikPR + bf̃ikPL

)
u(p3) (6.1)

We will count the decay width for unpolarized case therefore we average through neutralino
spin states and sum over fermion spin states

|M0|2 =
1

2

∑

s3,s2

M0M∗
0

=
1

2
Tr
[
(6p2 +mf )(a

f̃
ikPR + bf̃ikPL)(6p3 +mχ̃0

k
)(a∗f̃ik PL + b∗f̃ik PR)

]

= p2 · p3 (|af̃ik|2 + |bf̃ik|2) +mfmχ̃0
k
(af̃ikb

∗f̃
ik + a∗f̃ik b

f̃
ik) (6.2)

We stress again that we do not sum over the indices i, k. Finally we come to the tree level
decay width in the CMS system

Γ0 =
pf

32π2m2
χ̃0

k

∫
|M0|2dΩ (6.3)
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where the resulting particles carry the momentum of the absolute value pf

pf =

√
λ(m2

χ̃0
k

,m2
f̃i
,m2

f )

2mχ̃0
k

(6.4)

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx (6.5)

6.2 One loop level

To calculate the amplitude at one loop level we must treat the following two diagrams

M1 = +

The first diagram leads to vertex corrections, the second diagram includes wave function
and other counterterms. The external fields and their momenta are the same as in the
tree level case. We define new renormalized coefficients A,B and write the one loop level
amplitude in the following manner

M1 = − i ū(p2)(APR +BPL)u(p3) (6.6)

The coefficients A,B further decompose to three parts: vertex corrections, wave function
corrections and conterterm corrections

A = a(v) + a(w) + a(c) (6.7)

B = b(v) + b(w) + b(c) (6.8)

The absolute value of the amplitude to the next to tree level is

|M|2 = |M0|2 + 2Re[M∗
0M1] + . . .

= p2.p3 (|af̃ik|2 + |bf̃ik|2) +mfmχ̃0
k
(af̃ikb

f̃∗
ik + af̃∗ik b

f̃
ik)

+ 2p2.p3 Re[Aaf̃∗ik +Bbf̃∗ik ] + 2mfmχ̃0
k
Re[Abf̃∗ik + af̃∗ikB] + . . . (6.9)

Vertex corrections

There are two diagrams that contribute to the vertex corrections

χ̃0
k

f̃i

f

=

f̃

f

G +

f

f̃

g̃

The coefficients a(v), b(v) are (see the appendix B)

a(v) = (4π)2Aff̃GR (λ,mf̃i
,mf , b

f̃
ik, a

f̃
ik,−gs,−gs,−gs)
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+ (4π)2
2∑

j=1

Ag̃f f̃R (mg̃,mf ,mf̃j
, af̃jk, b

f̃
jk,

√
2gsR

q̃
iR,−

√
2gsR

q̃
iL,

√
2gsR

q̃
jR,−

√
2gsR

q̃
jL) (6.10)

b(v) = a(v)(Aff̃GR ↔ Aff̃GL , Ag̃f f̃R ↔ Ag̃f f̃L ) (6.11)

The second diagram needed a special treatment. The neutralino is a Majorana fermion
and not only the contractions ¯̃gg̃, g̃¯̃g are allowed but also the contractions g̃g̃ and ¯̃g¯̃g are
possible. The rules for Majorana fermions are described in [17]. According to this text it is
more convenient to transform terms in the corresponding T-product. The second diagram
for vertex correction can be transformed in the following way

. . . f̄Γ1g̃f̃ | f̄Γ2g̃f̃ | ¯̃χΓ3f f̃
∗ . . .→ . . . f̄Γ1g̃f̃ | ¯̃gcΓ

′

2f
cf̃ | f̄ cΓ′

3χ̃
cf̃∗ . . .

where Γ
′

i = CΓiC
−1 = ηiΓi ,C is the charge conjugation operator and ηi = 1 for 1, γ5.

The Dirac spinor and the charge-conjugate Dirac spinor are

ψ(x) =

∫
d3p

(2π)3
1√
2Ep

∑

s

(aspu
s(p)e−ipx + b†sp v

s(p)eipx) (6.12)

ψc(x) =

∫
d3p

(2π)3
1√
2Ep

∑

s

(a†sp v
s(p)eipx + bspu

s(p)e−ipx) (6.13)

And the expression for the propagator of the charge-conjugate fermion field is

〈
0|T (f cf̄ c)|0

〉
= C(

〈
0|T (f f̄)|0

〉
)TC−1 =

i

−6p−m
= iS(−p) (6.14)

Wave function corrections

Two diagrams contribute to the fermion self-energy and three to the sfermion

f f
= +

f

G

g̃

f̃

f̃ f̃
= + +

G

f̃

g̃

f

f̃

We have not explicitly showed the indices on sfermions that denote mass eigenstate.

The coefficients a(w), b(w) are (see the appendix B)

a(w) =
1

2
(δZLfG +

2∑

n=1

δZL
g̃f̃n

)af̃ik +
1

2

2∑

j=1

(δZ f̃iG
ji + δZ g̃fji +

2∑

n=1

δZ f̃n

ji )af̃jk (6.15)

b(w) = a(w)(L↔ R, af̃ik ↔ bf̃ik, a
f̃
jk ↔ bf̃jk) (6.16)
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where the arguments that appear in the functions Π(p2, . . .) are

δZfG ↔ Π(m2
f , λ,mf ,−gs,−gs,−gs,−gs)

δZg̃f̃n
↔ Π(m2

f ,mf̃n
,mg̃,−

√
2gsR

q̃
nL,

√
2gsR

q̃
nR,

√
2gsR

q̃
nR,−

√
2gsR

q̃
nL)

δZ f̃Gji ↔ Π(m2
f̃i
, λ,mf̃i

,−gs,−gs)
δZ g̃fji ↔ Π(m2

f̃i
,mg̃,mf ,

√
2gsR

q̃
iR,−

√
2gsR

q̃
iL,−

√
2gsR

q̃
jL,

√
2gsR

q̃
jR)

δZ f̃n

ji ↔ Π(...,mf̃n
,−g2

sA
2
jnA

2
ni)

In the topology with sfermion scalar loop we have omitted the possibility of presence of
the other flavor of squark in the loop. This is prohibited because the color factor equals
zero. We also do not need to consider the term A2

jiA
2
nn in the four sfermions coupling from

the same reason.

Counterterm corrections

a(c) =
1

mf
hf δmfZk3R

f̃
i2 + hfZk3δR

f̃
i2 + gf fLkδR

f̃
i1 (6.17)

b(c) =
1

mf
hf δmfZk3R

f̃
i1 + hfZk3δR

f̃
i1 + gf fRkδR

f̃
i2 (6.18)

6.3 Soft gluon radiation

Having calculated the decay width at one loop level including all the wave function and
counterterm corrections the result is free of UV-divergence. But there is another type of
the divergence - infrared one. This is caused by the appearance of the massless particle
(in our case it is gluon) in the loops. This divergence is compensated when we calculate a
sum of two decay widths the original one and a one with an additional gluon in the final
state carrying infinitely small energy and thus being undetectable. Such gluons are called
soft.

Gluon can be radiated by fermion as well as by the sfermion

p2

k

p1

k

The amplitude for the first process is

Mf = ū(p2)(−igsγµ)ε∗µ
i(6p2 + 6k +mf )

(p2 + k)2 −m2
f

A0(p2 + k)

= ū(p2)(−igsγµ)ε∗µ
i(6p2 +mf )

2p2.k
A0(p2) = ū(p2) gs

p2.ε
∗

p2.k
A0(p2) (6.19)
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The A0 is connected to the process without an additional gluon by the relation

M0 = ū(p2)A0 (6.20)

Analogously the amplitude in the case of radiated gluon by sfermion is

Mf̃ = −gs
p1.ε

∗

p1.k
A′

0(p1) (6.21)

In both amplitudes we have not included the generator T a. We will count the color factor
in the next section.

The square of the amplitude of radiating gluon in unpolarized case is

|Msoft|2 = |M0|2 (−g2
s)

{
p2
2

(p2.k)2
− 2p2.p1

(p2.k)(p1.k)
+

p2
1

(p1.k)2

}
(6.22)

where the minus sign in (−g2
s) comes from using the formula

∑

λ

ε∗λµ (k)ελν (k) = −gµν (6.23)

The result for the soft gluon radiation can be written in the following form [18]
(
dΓ

dΩ

)

soft
= −

(
dΓ

dΩ

)

0
× g2

s

(2π)3

∫

|~k|≤∆E

d3k

2ω
T (6.24)

where

T =

{
p2
2

(p2.k)2
− 2p2.p1

(p2.k)(p1.k)
+

p2
1

(p1.k)2

}
(6.25)

The integrals needed for the calculation have generally the form

Iab =

∫

|~k|≤∆E

d3k

2ω

2a.b

a.k b.k
(6.26)

When a = b the integral equals

Ia2 = 2π

{
log

4∆E2

λ2
+
a0

|~a| log
a0 − |~a|
a0 + |~a|

}
(6.27)

This integral is divergent after sending the gluon mass λ to zero. However, this IR-
divergence cancel with the IR-divergence in the B-integrals presented in the self-energy
diagrams.

The second special case is when ~a = −~b = ~p

Iab = 2π
a.b

(a0 + b0)|~p|

{
1

2
log

a0 + |~p|
a0 − |~p| log

4∆E2

λ2
− Li2

(
2|~p|

a0 + |~p|

)
− 1

4
log2 a0 + |~p|

a0 − |~p|

+
1

2
log

a0 + |~p|
a0 − |~p| log

4∆E2

λ2
− Li2

(
2|~p|

a0 + |~p|

)
− 1

4
log2 a0 + |~p|

a0 − |~p|

}
(6.28)
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Divergent parts from this integral cancel with divergent parts in C-integrals in vertex cor-
rections.

It is standard to write the equation (6.24) as
(
dΓ

dΩ

)

soft
=

(
dΓ

dΩ

)

0
δs (6.29)

where δs is defined as

δs =
−g2

s

(2π)3 2
(Ip2

2
− 2Ip2p1 + Ip2

1
) (6.30)

6.4 Neutralino decay width

The neutralino decay width with corrections to the second power of the coupling gs is

Γ =
4πpf

32π2m2
χ̃0

k

(
C0
F |M0|2 + CsF δs|M0|2 +C1

F 2Re[M∗
0M1]

)
(6.31)

We have kept postponing the identification of the color factors through the previous sec-
tion. However, it is always useful to think of them at the beginning as some could equal
zero which can simplify the calculation.

The color factor for tree level case is the simplest one. It only declares the fact that
there are three possible color states of the final particles

C0
F = 3 (6.32)

The helpful relation for counting rest color factors is the identity
∑

a,t

T astT
a
tu =

4

3
δsu (6.33)

The following diagrams include the color of particles. They represent amplitudes in this
order: Mf , Mf̃ , M0, M1

r r r r

s s s s

t

u
v

w

The second color factor CsF is the same for |Mf |2, |Mf̃ |2 and MfM∗
f̃

MfM∗
f̃

: CsF =
∑

a,r,s,t,u

δtrδsuT
a
stT

∗a
ur =

∑

a,r,s

T asrT
a
rs = 4 (6.34)

The last color factor C1
F is

C1
F =

∑

a,r,s,v,w

δrsδvwT
a
vrT

a
sw = 4 (6.35)
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6.5 Numerical results

In this subsection I present the numerical results for the neutralino decay. There are lots
of new parameters entering the MSSM theory. I set their numerical values at first. I have
chosen for the values given in the MSSM package of the Feynarts program for the most of
them.

The first set of the presented graphs shows the decay widths and masses of the particles
as a function of the parameter µ. This parameter is involved in many places: Higgs
potential, neutralino as well as sfermion masses, etc. The parameter tanβ is set to be 7.
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Figure 6.1: left graph: Γ0 (GeV) as a function of the parameter µ; right graph: mass
(absolute value) spectrum; each color represent the following particle: red - neutralino 1,
green - neutralino 2, blue - neutralino 3, gray - neutralino 4, orange - sbottom 1
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Figure 6.2: left graph: Γ0 (dashed) and Γ (solid) for the neutralino 2; right graph: Γ0

(dashed) and Γ (solid) for neutralino 4 as a function of the parameter µ
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Figure 6.3: The situation as in the Fig.6.2 but with omitting the finite terms coming from
gluon radiation
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In the four upper graphs I let the parameter tanβ to vary. The parameter µ is set to be
−400.
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Figure 6.4: left graph: Γ0 (GeV) as a function of the parameter tanβ; right graph:
mass (absolute value) spectrum (GeV)
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Figure 6.5: left graph: Γ0 (dashed) and Γ (solid) for the neutralino 2; right graph: Γ0

(dashed) and Γ (solid) for the neutralino 4 as a function of the parameter tanβ
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Figure 6.6: left graph: Γ0 (longest dashes), Γ with included bremsstrahlung (solid)
and Γs with included soft gluon approximation with different values of ∆E2(∆E2 =
1, 10, 100GeV from the bottom curve up) for the neutralino 2 and 4; tanβ = 7

parameter point: M = 300,MSusy = 200, Ae = Au = Ad = 100,Mg̃ = 787,mA0
=

700,mH+ = 705

From the presented graphs we see that the corrections to the tree level widths are around
30%. From the last two graphs we can see that the soft gluon approximation is better
with increasing gluon energy. But gluon with the energy around 10 GeV can no more be
considered soft.



Conclusion

In my master thesis I derived the lagrangian for the MSSM theory using the formalism
of superspace and superfields. I tried to be as close to the notation that is used at the
Institute for High Energy Physics in Vienna as possible.

I calculated the decay width for the neutralino decay to an antisbottom and a bottom
quark at a one loop level considering only the QCD corrections using Feynman rules com-
ing from the derived lagrangian. I had to consider two loop diagrams contributing to the
vertex corrections and five loop diagrams contributing to the self-energies those generic
form I calculated by hand. I also encountered the problem with an infrared divergence
which I solved by considering a soft gluon radiation.

At the end of my thesis I presented graphs where the decay widths and particle masses
depend on various MSSM parameters.
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Appendix A

Notation, Spinor Algebra and

Grassman numbers

We use the metric ηµν = diag(1,−1,−1,−1).

The Pauli matrices and the matrix σ0 are defined as

σ0 :=

(
1 0
0 1

)
σ1 :=

(
0 1
1 0

)
σ2 :=

(
0 −i
i 0

)
σ3 :=

(
1 0
0 −1

)

In the Weyl representation, the Dirac matrices γµ are given by

γµ =

(
0 σµ

σ̄µ 0

)

where σµ := (σ0, σi) , and σ̄µ := (σ0,−σi)

Dirac bispinor: ψ =

(
ψL
ψR

)

The two-component objects ψL and ψR are called left-handed and right-handed Weyl
spinors. Their transformation laws under rotations ~α and boosts ~β are

ψL → AψL where A = exp(− i
2~α~σ − 1

2
~β~σ)

ψR → (A−1)+ψR where (A+)−1 = exp(− i
2~α~σ + 1

2
~β~σ)

There are two inequivalent spinor representations of SL(2,C), the self-representation and
the complex conjugate self-representation. Elements of the representation space transform
under the self-representation as

χa → A b
a χb

and under the complex conjugate self-representation as
ηȧ → A∗ ḃ

ȧ ηḃ = ηḃA
∗ ḃ
ȧ = ηḃA

∗T ḃ
ȧ = ηḃA

+ḃ
ȧ

Our spinor summation convention is: χη = χaηa = ηχ
χ̄η̄ = χȧη

ȧ = η̄χ̄

44
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The components of spinors χ, η̄, . . . are Grassman variables therefore the quadratic forms
(χη), (χ̄η̄) are symmetric.

We rise and lower the spinor indices by using the invariant two-dimensional antisymmetric
metric tensor: χa = εabχb, χa = εabχ

b, ηȧ = εȧḃηḃ, ηȧ = εȧḃη
ḃ

εab =

(
0 1
−1 0

)
= εȧḃ = iσ2 εab =

(
0 −1
1 0

)
= εȧḃ

Let us compute the transformation of ηȧ. We will need the following relation: (σi)T =
(σi)∗ = −σ2σiσ2

η
′ȧ = εȧḃη

′

ḃ
= εȧḃηċA

+ċ
ḃ
= εȧḃεċḋη

ḋA+ċ
ḃ
= εḋċA

+ċ
ḃ
εḃȧηḋ

= −iσ2(1 + i
2~α~σ + 1

2
~β~σ + · · ·)iσ2

= (1 − i
2~α~σ

T + 1
2
~β~σT + · · ·) ȧ

ḋ
ηḋ

= (1 − i
2~α~σ + 1

2
~β~σ + · · ·)ȧ

ḋ
ηḋ = (A−1)+ȧ

ḋ
ηḋ

Thus we see the index structure in the Dirac bispinor: (ψL)a, (ψR)ȧ

We know that Lorentz group and 2-dimensional special linear group are closely connected.
To be more precise, SL(2, C) is the universal covering group of L↑

+ group. For the details
we refer to [19]. From the following relation

σµ 7→ AσµA+ = (Λ−1)µνσ
ν , (Λ−1)µν =

1

2
Tr(σ̄νAσ

µA+)

we can uncover the index structure of σ matrix:

A b
a (σµ)bċA

+ċ
ḋ

= ((Λ−1)µν)
b
a (σν)bḋ

The following relations hold: (σ̄µ)ȧa = εabεȧḃσµ
bḃ

σµaȧ = εabεȧḃ(σ̄
µ)ḃb

The σµν , σ̄µν are defined as: σµν := i
4 (σµσ̄ν − σν σ̄µ)

σ̄µν := i
4 (σ̄µσν − σ̄νσµ)

Here we present useful identities

θaθb = −1

2
εab(θθ) θaθb =

1

2
εab(θθ)

θȧθḃ =
1

2
εȧḃ(θ̄θ̄) θȧθḃ = −1

2
εȧḃ(θ̄θ̄) (A.1)

(σµ)bȧ = (σ̄µ)ȧb (A.2)

Tr(σµσ̄ν) = 2ηµν (A.3)

σµσ̄ν + σν σ̄µ = 2ηµν (A.4)
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εac(σ
µν) c

b = εbc(σ
µν) c

a

εȧḃ(σ̄
µν)ḃ ċ = εċḃ(σ̄

µν)ḃ ȧ (A.5)

θσµξ̄ = −ξ̄σ̄µθ (A.6)

(θσµξ̄)+ = (ξσµθ̄) (A.7)

(θσµθ̄)(θσν θ̄) =
1

2
ηµν(θθ)(θ̄θ̄) (A.8)

Tr(σ̄µν σ̄ρσ) =
1

2
(ηµρηνσ − ηµσηνρ) − i

2
εµνρσ

Tr(σµνσρσ) =
1

2
(ηµρηνσ − ηµσηνρ) +

i

2
εµνρσ (A.9)

In the course of chapter 2 and 3 when constructing lagrangian we will need the following
relations

σµ
aḃ
σ̄ν ḃc =

1

2
(σµσ̄ν + σν σ̄µ) c

a +
1

2
(σµσ̄ν − σν σ̄µ) c

a = ηµνδ c
a +

2

i
σµν c

a (A.10)

σ̄µ ȧbσνbċ =
1

2
(σ̄µσν + σ̄νσµ)ȧċ +

1

2
(σ̄µσν − σ̄νσµ)ȧċ = ηµνδȧċ +

2

i
σ̄µν ȧċ (A.11)

Here we show an useful example of manipulating with Weyl spinors

θ∂µψ(θσµθ̄) = θa∂µψaθ
bσµbċθ

ċ = −θaθb∂µψaσµbċθċ

=
1

2
εab(θθ)∂µψaσ

µ
bċθ

ċ = −1

2
(θθ)∂µψ

bσµbċθ
ċ (A.12)

As we mentioned above, θa, θȧ are Grassman numbers. That means, they anticommute
among themselves: {θa, θb} = {θȧ, θḃ} = {θa, θḃ}
Despite the fact that they are discrete objects we can construct a differentional calculus
for them. We define the derivatives formally as

∂
∂θa θb := δba

∂
∂θa

θb := δab
∂
∂θȧ

θḃ := δȧ
ḃ

∂
∂θȧ

θḃ := δȧ
ḃ

When applying derivation on the product of Graasman variables one must take into account
the anticommutative nature of Grassman numbers

∂a(θ
bθc . . . θd) = δbaθ

c . . . θd − δcaθ
b . . . θd + . . .

By using the metric tensor we can raise and lower indices of derivatives:

εab∂b = −∂a εab∂
b = −∂a

Here we present useful relations:

∂aθb = −εab ∂aθb = −εab

∂ȧθḃ = −εȧḃ ∂ȧθḃ = −εȧḃ (A.13)

∂aθ
2 = 2θa ∂ȧθ

2 = −2θȧ

∂aθ2 = −2θa ∂ȧθ2 = 2θȧ (A.14)



Appendix B

Generic loop diagrams

B.1 Sfermion self-energies

The amplitude for sfermion self-energies is defined as

p

M = iΠij(p
2)

where following three diagrams contribute to the Πij(p
2).

The first generic self-energy diagram is one containing vector particle in the loop

0 1

m0

m1

q

q+p

0 : ig0(2p + q)µ

1 : ig1(2p + q)ν

Π(p2) = −g0g1
4π2

[A0(m
2
1) + (4p2 +m2

0)B0(p
2,m2

0,m
2
1) + 4p2B1(p

2,m2
0,m

2
1)] (B.1)

The complete argument in the function Π(p2) is Π(p2,m0,m1, g0, g1)

The second generic diagram includes fermion loop

0 1

m0

m1

q

q+p

0 : i(gL0 PL + gR0 PR)

1 : i(gL1 PL + gR1 PR)
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Π(p2) = − 1

4π2
[2m1m0(g

L
0 g

L
1 + gR0 g

R
1 )B0 + 2(gL0 g

R
1 + gR0 g

L
1 )(p2B1 + p2B11 + 4B00

+
1

6
(p2 − 3m2

0 − 3m2
1))]

= − 1

4π2
[2m1m0(g

L
0 g

L
1 + gR0 g

R
1 )B0 + (gL0 g

R
1 + gR0 g

L
1 )(A0(m

2
0) +A0(m

2
1)

+ (m2
0 +m2

1 − p2)B0)] (B.2)

where the arguments of the B integrals are the same as in the previous case and the com-
plete argument in Π(p2) is Π(p2,m0,m1, g

L
0 , g

R
0 , g

L
1 , g

R
1 )

The last generic diagram that contributes to the sfermion self-energy is the simplest one

m0

0

q 0 : ig0

Π(p2,m0) = − 1

4π2
g0A0(m

2
0) (B.3)

B.2 Fermion self-energies

The amplitude for fermion self-energies is defined as

p

M = i ū(p)Π(p2)u(p)

The term Π(p2) further decomposes to

Π(p2) = 6pPLΠL(p2) + 6pPRΠR(p2) + PLΠSL(p2) + PRΠSR(p2) (B.4)

The following two diagrams contribute to the Π(p2).

The first generic self-energy diagram is one containing vector particle in the loop
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0 1

m0

m1

q

q+p

0 : iγµ(gL0 PL + gR0 PR)

1 : iγµ(gL1 PL + gR1 PR)

ΠL(p2) =
1

4π2
gL0 g

L
1 (2B0(p

2,m2
0,m

2
1) + 2B1(p

2,m2
0,m

2
1)) (B.5)

ΠSL(p2) = − 1

4π2
gL0 g

R
1 m14B0(p

2,m2
0,m

2
1) (B.6)

ΠR(p2) = ΠL(p2)(L↔ R) (B.7)

ΠSL(p2) = ΠSR(p2)(L↔ R) (B.8)

The complete argument in all Π(p2) in both diagrams is Π(p2,m0,m1, g
L
0 , g

R
0 , g

L
1 , g

R
1 )

The second generic diagram contains fermion and a scalar particle in the loop

0 1

m0

m1

q

q+p

0 : i(gL0 PL + gR0 PR)

1 : i(gL1 PL + gR1 PR)

ΠL(p2) =
1

4π2
gL0 g

R
1 (B0(p

2,m2
0,m

2
1) +B1(p

2,m2
0,m

2
1)) (B.9)

ΠSL(p2) =
1

4π2
gL0 g

L
1 m1B0(p

2,m2
0,m

2
1) (B.10)

ΠR(p2) = ΠL(p2)(L↔ R) (B.11)

ΠSR(p2) = ΠSL(p2)(L↔ R) (B.12)

B.3 Vertex corrections

The amplitude for the vertex corrections is defined as

M =
i

4π2
ū(p2)(ALPL +ARPR)u(p3) (B.13)

The first vertex diagram is with the vector particle in the loop
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m3

m1

m2

M1

M2

M0 q

p3

p2

p1

0

1

2

0 : i(gL0 PL + gR0 PR)

1 : ig1(q − 2p1)
µ

2 : iγν(gL2 PL + gR2 PR)

AFSVL = gL0 g1g
R
2 [2C0(m

2
1 −m2

3) + C2(2m
2
1 +m2

2 − 2m2
3) + C1(3m

2
1 −m2

3)

+ 4C00 −
1

2
+ C11m

2
1 + C12(m

2
1 +m2

2 −m2
3) + C22m

2
2]

+ gR0 g1g
L
2 m2m3(2C0 + 2C2 + C1) + gL0 g1g

L
2 m2(2M2C0 +M2C1 +M2C2)

+ m3g
R
0 g1g

R
2 (−2M2C0 −M2C1) (B.14)

AFSVR = AFSVL (L↔ R) (B.15)

The argument of AFSVR , AFSVL is AFSVR,L (M0,M1,M2, g
L
0 , g

R
0 , g1, g

L
2 , g

R
2 )

The argument in all Ci, Cij integrals is C(m2
1,m

2
3,m

2
2,M

2
0 ,M

2
1 ,M

2
2 )

The second vertex diagram contains two fermions and one scalar in the loop

m3

m1

m2

M1

M2

M0 q

p3

p2

p1

0

1

2

0 : i(gL0 PL + gR0 PR)

1 : i(gL1 PL + gR1 PR)

2 : i(gL2 PL + gR2 PR)

AFFSL = −gL0 gL1 gL2 M0M1C0 + gL0 g
L
1 g

R
2 M1m2(C1 + C2) − gR0 g

R
1 g

L
2 M1m3C1

− gL0 g
R
1 g

L
2 [m2

1C1 +m2
2C2 + 4C00 −

1

2
+m2

1C11 +m2
2C22 + (m2

1 +m2
2 −m2

3)C12]

+ gL0 g
R
1 g

R
2 m2M0(C0 + C1 + C2) − gR0 g

L
1 g

L
2m3M0(C0 + C1)

+ gR0 g
L
1 g

R
2 m2m3C2 (B.16)

AFFSR = AFFSL (L↔ R) (B.17)
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The argument of AFFSR , AFFSL is AFFSR,L (M0,M1,M2, g
L
0 , g

R
0 , g

L
1 , g

R
1 , g

L
2 , g

R
2 )

The calculation of all presented generic diagrams has been performed in the convention of
the LoopTools program [20].



Appendix C

Bremsstrahlung1

The following bremsstrahlung integrals are taken from [21]. These integrals are applicable
to the processes where a massive particle (p3,m3) decays into two massive particles (p1,m1)
and (p2,m2) and a photon (gluon) (q0, λ). They read as follows

Ij1,...,jmi1,...,in
=

1

π2

∫
d3p1

2p10

d3p2

2p20

d3q

2q0
δ(p3 − p1 − p2 − q)

±2qpj1 . . . ± 2qpjm
±2qpi1 . . .± 2qpin

(C.1)

The plus signs belong to p1, p2 and the minus sign to p3.

The decay width for the neutralino decay into antisbottom squark, bottom quark and
a gluon reads:

Γbrems =
1

2m3

g2
s

25π3
CF (cI + c1I1 + c2I2 + c11I11 + c12I12 + c22I22 + c12I

1
2 ) (C.2)

where the corresponding coefficients are:

c = aa∗ + bb∗ (C.3)

c1 = 2[(m2
1 −m2

2 −m2
3)(aa

∗ + bb∗) − 2m2m3(ab
∗ + ba∗)] (C.4)

c2 = c1 (C.5)

c11 = 2[(m4
1 −m2

1m
2
2 −m2

1m
2
3)(aa

∗ + bb∗) − 2m2
1m2m3(ab

∗ + ba∗)] (C.6)

c12 = 2[(m4
1 −m4

2 +m4
3 − 2m2

1m
2
3)(aa

∗ + bb∗)

− 2(m2
1m2m3 −m2m

3
3 +m3

2m3)(ab
∗ + ba∗)] (C.7)

c22 = 2[(−m4
2 −m2

1m
2
2 −m2

2m
2
3)(aa

∗ + bb∗) − 2m3
2m3(ab

∗ + ba∗)] (C.8)

c12 = aa∗ + bb∗ (C.9)

where the masses and couplings are: m1 = mf̃i
,m2 = mf ,m3 = mχ̃k

, a = aik, b = bik. The
analytic forms of the bremsstrahlung integrals are given in the mentioned article.

1Calculations in the original thesis did not include Bremsstrahlung

52



Bibliography

[1] D. J. H.Chung, L. L. Everett, G. L. Kane, S. F. King, J. Lykken, L. T. Wang: The
Soft Supersymmetry-Breaking Lagrangian: Theory and Aplications, 2003 [arXiv:hep-
ph/0312378]

[2] S. Coleman and J.Mandula, Phys. Rev. 159, (1967), 1251-1256

[3] R. Haag, J. T. Loupuszánski and M. Sohnius, Nucl. Phys. B88 (1975) 257

[4] J. Wess, J. Bagger: Supersymmetry and Supergravity, Princeton University Press, 1992

[5] H. J. W. Müller-Kirsten, A. Wiedemann: Supersymmetry: An Introduction with Con-
ceptual and Calculational Details, World Scientific, Singapore,1987

[6] D. Bailin, A. Love: Supersymmetric Gauge Field Theory and String Theory, IOP
Publishing Ltd, 1994

[7] S. P. Martin: A Superymmetry Primer, 1999 [arXiv:hep-ph/9709356]

[8] M. E. Peskin, D. V. Schroeder: An Introduction to Quantum Field Theory, Addison-
Wesley Publishing Company, 1995

[9] H. E. Haber and G. L. Kane The Search for supersymmetry: Probing the physics
beyond the standard model, Phys. Rep. 117 (1985), 75

[10] K. Kovařík: PHD Thesis, Bratislava, 2005

[11] G. ’t Hooft and M. Veltman, Nucl. Phys. B153 (1979) 365

[12] G.Passarino and M.Veltman, Nucl. Phys. B160 (1979) 151

[13] J. Collins, "Renormalization", Cambridge Univ. Press, Cambridge 1984

[14] H. Eberl: Dissertation, Wien, 1998

[15] W. Siegel, Phys. Lett. B84 (1979) 193

[16] M. Steinhauser: Übungen zu Strahlungskorrekturen in Eichtheorien, Herbstschule für
Hochenenergiephysik, Maria Laach 2003

[17] A. Denner, H. Eck, O. Hahn, J. Küblbeck: Compact Feynman rules for Majorana
fermions, Phys. Lett. B291 (1992), 278-280



[18] K. Kovařík: private notes

[19] M. Fecko: Differential Geometry and Lie Groups for Physicists, Cambridge University
Press, 2006

[20] T. Hahn: LoopTools (User’s Guide), 2004

[21] A. Denner: Techniques for the calculation of electroweak radiative corrections at the
one-loop level and results for W-physics at LEP200 [arXiv:hep-ph/0709.1075]


