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Motivation
@0000

Example of a process

@ Imagine a calculation of the process ete™ — WTW —
guestion: How many Feynman diagrams does one have to calculate?

e e - W W

Tree level

Ve

T1C1N1 T1C2N2 T2 C1N3

diagrams generated by FeynArts
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Motivation
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Motivation

@ question: How many Feynman diagrams does one have to calculate?

— the answer is: MANY

@ question: How many loop integrals does one have to really calculate?

— the answer is: only FEW

@ Any loop integral can be decomposed into a few "scalar" integrals. The
decomposition is called tensor reduction.

@ So the message here is that all amplitudes resulting from calculations of Feynman
diagrams can be written only through a few number of basic integrals.
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Dimensional regularization

@ aim: To make the divergence explicit.

@ way: By lowering the dimension of integral. Initially divergent integrals can be thus
made finite

@ note: DimReg preserves gauge invariance and Poincaré invariance unlike e.g
cut-off scheme.

example:

/ %dsiwx / —d2x~lnx / —dx
a X

linear divergence  logarithmic divergence  convergent
@ Minkowski space is D-dimensional (one dimensional time together with
(D-1)-dimensional Euclidean space) where D < 4. It is hard to imagine

D-dimensional space, however, we can construct a formal calculus in
D-dimensions.

Passarino-Veltman integrals and tensor reduction H. Hlucha



DimReg
oe

Dimensional regularization

@ notes:
* Formal calculus = set of consistent formal rules.
+ The limit D — integer number leads to ordinary integration.
x Results obtained by DimReg can be checked by other more physical methods
(e.g lattice calculations). But it takes more time and more effort.
@ rules for calculation in D-dimensions

* metric : g is D-dimensional, u,v =0,1,...D — 1
9, =D

+ Dirac matrices: {y#~"} = 2g*¥
TTl=4

@ useful formulas: 1
7w =S wl =94 =D

Y = 297" = Yy = (2= D)w
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Pa-Ve integrals
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Standard form of Pa-Ve integral

@ Standard one-loop integral

27TN 4—D
T;’:‘l.../,LM(plv s PNZ1, Mo, ey My 1) = %

/qu Qg -+ Gpm
[02 —m3 +ie][(q 4 p1)? — mZ +ic]...[(a + pn—1)? — MZ_, +ie]
[ Py

p1 = p]

P2 = p5 + P}

Pn—1=Py_1 +PN_2
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Pa-Ve integrals
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Decomposition

@ Decomposition: allowed due to Lorentz covariance in D-dimensions

B*¥ = piB;
B* = g*Boo + p)'PyBus
Ct = plfCi+psCy
CH = g""Coo + Py'PYCu1 + (PLP + P5PY)C12 + P5P; Ca2

@ All loop integrals can be reduced to basic "scalar" integrals Ag, Bg, Cg, Dg, - - -
They do not contain any Lorentz index in the numerator.

So it means that integrals A*¥ | A,,B# Bq, ... can be expressed only through
scalar integrals.
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Pa-Ve integrals
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Generic integral

@ The basic integral with the help of which Pa-Ve integrals can be computed is of the

form
1
In(A) = o [ —
") /d Y —Ation

It is convergent providing the dimension D < 2n and A > 0.
@ Calculation of the generic integral
1. Poles of the integrand: qo = ++/02 + A Fie’

2. Wick rotation:
Im go Cauchy theorem: §.(...)=0

arcs give zero

. [ dag...= ['% dgo...
Re qq

In(A) = ['52, dao [ dP~a(g? — A +ie) "

—ioco
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Pa-Ve integrals
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Generic integral

3. Substitution: qo =ige 0, 9 =gak, ¢2=-0q2

after which the integral has the form

In(A) :i/quE(—l)"(qé FA—ig)

4. Solid angle Qp in D dimensions

o0 D o0
</ dx e‘x2> :/ dx!... dxPe~ Llax
0 0

/dQD/ dx Pl = %QDF(D/Z)
0

(vm)P

5. Polar coordinates

o0 _ o0 1 -
/dDQE :/dQD/O dge g 1:/dQD/O dQEE(Qé)D/Z !
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Pa-Ve integrals
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Generic integral

@ After going to spherical coordinates the generic integral becomes

D/2
n7r/

(&) =i(-1)" 5

/ dx xP/27H(x 4+ A —ig)"
0

@ We have got a simple one-dimensional integral. It can be solved by using Beta
and Gamma functions.

with the substitution A_ie A—ie
y:X—l—A—ia7 y:_(X—I—A—iez)
we get
h(A) = i(-1)" - (A —ig)?/2 " /l dy (1 —y)P/2-Dy(n=b/2=
r(o/2) 0

Applying identities for Beta and Gamma functions we finally come to the result

In(A) = i(fl)”wD/ZW(A —ig)P/2n
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Pa-Ve integrals
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Scalar integral Ag

@ The definition is:

27 p)4-P Ly
Ag(m?) = %/d[’q (@®> —m? 4+ig)7t

— parameter . has dimension of energy and serves for retaining the dimension
of the integral

@ With the help of the generic integral we can write

D—4

i 42

@ Integral is divergent sending D — 4 b/c I'(z) has pole at z = -1.

@ Introducing ¢ = (4 — D)/2 integral Ag gets the form

Ao(mz)_—m2< m’ >_6 M — 1)

4mp?
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Pa-Ve integrals
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Scalar integral Ag

@ Next step is to have A in e-series expansion

m2 \ | m?2 | m?2 5
= - —1—
y exp | —eln y eln y + O(e%)

Me—1)= ﬁr(ue) _ % “ (1) + e + O()

where ~ is the Euler-Mascharoni constant v = —I"'(1) = 0.5772

@ Collecting the terms up to the first power of e the scalar integral A finally is

1 2
Ap(m?) = m2<EWE+In4ﬂIn<m—2>+l+(’)(€)>
1%

= m? (Aln <r:22> +1+O(z—:)>

with A = % — v + Indrx
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Example 1
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Electron self-energy

PN 0: ieyt
q m ievy”

.7 o . 1 -
p p+d p B(p2,0,m?)

@ Calculation of the self-energy

ix = 0 [ 900 ey DO @M
- = (2 )D ( ) q2+i€ (q+P)27m2+i€ (wﬂe)
02 (2

N (Er)z Gl /qu< 1y LD

" =D, v wwu:(zf D)y,
_ e /(D*Z)(VJrq)*Dm
o (4n)? DyD;

2

= (f E [(D —2)pBy — DMBj + (D — 2)7#B,/]
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Example 1
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Reduction of the B* integral

@ Decomposition: B¥# = p#B;

@ We contract the equation by p,, (which is all we have at our disposal)

ZB — pHB — /dD i pP.q i
PR =P & @Ol pZ—me 1 id]

pa= (@+p) —m? +ie] - (@ +ic) - (52 — m?))

_1(/ 1 7/ 1
_2qq2+i€ q

(@ +p)? —m? +ie

2 2 1
- Eem )/q CEEECER ).

@ Solving this simple equation for B; we get

By(p?,0,m?) = T;[Ao(o)*Ao(mz)*(Pz*mz)Bo(pz,O,mz)]
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Example 1
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Electron self-energy (continued)

@ Let us come back to the calculation of the amplitude

ie?

iy = @) [(D — 2)pBy — DMBg + (D — 2)v*B,]
a2
- (thi)z [(D — 2)p(Bo + B1) — DMBy]

— We still cannot send D — 4 but have to do proper limit of DBy and DB; first.
For this purpose | show the following table.

@ UV divergent part of some Pa-Ve integrals

Integral UV divergent part
Ag(m?) — mZA
Bo — A
B — -IA
Boo(k?,m¢,m?) — —1(k?/3-mZ-m?)A
Bi1 — in
Coo — A
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Example 1
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Electron self-energy (continued)

@ Proper limit of DB, DB;:

DB,

DB,

1
(4725)<77'yE+|n47r+...> — 4By — 2
€

1/1
(4 — 2¢) {—5 <;—’yE+|n47r +} — 4B, +1

@ So the electron SE finally is:

in2
ST = oyl - 2)p(B0 +8y) — DBy
in2
- jTV[(zBo + 2B, — 1) — m(4Bo — 2)]

where the argument of all B integrals is B(p2, 0, m?)

@ The whole —i X can be expressed through Ag and By integrals only.
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Example 2
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Virtual photon self-energy

0: igoy*

. B(p?,m?,m?)
1: igyy”

gi = e for the electron

ST = G [0, T M e )
traces:
Tr(y#v") = 4g"”
Tr(v*4"9?) =0
Tr(9%9777) = 4(g""9"7 — 979”7 +9"7g"")

—i T gogl/ {a"(p+a)” —g*" [a.(p+a)] +a”(p + Q)" + m?g"” }
q

Passarino-Veltman integrals and tensor reduction H. Hlucha



Example 2
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Reduction of B#

@ Decomposition: B*Y = g""Bgg + p*p"B11
@ Contracting with metric tensor and with momentum we get the system

9B = DBgo+p?By
puB* = p“(Boo + p?Bi1)
@ Let us now calculate the LHSs in order to have them in terms of A, By integrals
q2
9 B* = / dq . .
a (@ -m§+ie)l(g+p)?—m? +ie]
= Ag(mf) +m3Bo(p?, m§, mf)

v D (p-a)a”
e = P e e
@ Now use:
(p0) = 5 (@ +P)2 = m? +ie] - (@ = m§ + 1) = (p% —m? — m3))
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Example 2
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Reduction of B#

@ To get

p.B*”

/}( q” B q”
a2\g2—m2+ic (q+p)2-—m?+ic
ql/
(q27m5+ie)[(q+p)z7m§+ie]>

2 2 2
—(p® — mi + mg)
@ From D-dimensional calculus we need

/dD =0
m2+|a)

@ The second LHS then becomes
1
PuB* = =p [Ao(m?) = (p? — m? + m?)By (p?, m3, m?)|

@ Solving the system we would obtain Bgg and By, expressed through integrals
Ao, Bg, By and still with dimension D in the expression. Last step is doing the
proper limit D — 4 like before.
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Example 2
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Photon self-energy (continued)

@ The amplitude after the reduction becomes

. 74igOgl 1 2
iy = w v _ gM¥ [q. v © Ny
' @) ), pop, (9P +@" — 9" @+ )] +a"(p )+ mPg )

—4igog1 [, 2 2 2
= Y Im“B 2 —-D)Bgyp — p“B11 — p°B
@z [ 0+ ( )Boo — p“B11 — p°B;

+p#p” [2By + 2By4] }

@ And after some cosmetic changes the final result is

—4igog1
(4m)?

+p¥p¥ [2B1 + 2B11] }}

—ix

{GW [szo — (p?By + m?By + Ag — 2500)]

@ This self-energy can be also expressed only through Ag, By integrals.
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Example 3
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QED vertex

ieyH
iey”
iey?

p1+q,m\

C(pf* (pZ - pl)zﬁpgﬁ)\zﬁmzﬁmz)

AN
[N

@ Calculation of the vertex correction A*

_ a0 [ 9% oy iP2tg4m)
A =t D/ P (iev?) [0+ p2)2 — m2 £ ie] (iev*)
i(Pr+g+m (iev?) —igpo

[(@ +p1)? —m? +ie] 2 — N2 +ie
ie3
(4m)?

/Eé%g%m+m+mww+m+mw
q
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Example 3
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QED vertex
@ |dentities:
Yy = (2-Dp
YAy v = AgHY + (D — 4)yHyY
AN e = =297y + (4 =D

@ Our vertex correction A*

a3
o= (fT)z /q ﬁ{(z D) — 200 o+ o + P pe]
(4 = D)av"pr + P2y" o + p2v"pal + (D — 4)mgyH + P + poyt + v pi]

(2 — D)m?y* +4m(2q + py + pz)“}

+

_l’_

@ Reduction: C# =p/['C; +p5C,
CH¥ = giCoo + p;'PYC11 + (Py'P5 + P5PY)Ci2 + PSPy Coz
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Example 3
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Reduction of C#

@ Decomposition CH =pi'CL+p5Cs
@ By contracting with p}' and p5 we get the system

(P1)uC* = p2Cy+ (p1.p2)Co
(p2)uCH (P1.p2)C1 + P3C,

@ Both LHSs can be written in terms of scalar integrals (Bg, Cy). Having done this
one can solve the above system of equations for C,, C, providing the
corresponding matrix is invertible.

@ note: not invertible at the threshold when p2pZ = (p;.p,)2. (almost no velocity of
colliding particles or decay to particles with almost no velocity)

@ Let us first rewrite the LHSs in terms of scalar integrals

D pP1.9
(P ) /d —mZ +ig)[(q+ p1)2 — m2 +ie][(q + p2)? — m3 + ie]
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Example 3
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Reduction of C#

_ / 3([(a+p1)® —mf +ie] = (a* — md +ie) — (p§ — m] + mF))
~Ja (a2 = m§ +ie)[(a+p1)2 —mE +ic][(d + p2)? — M3 +ie]

1 1 1
EBo(pi m3,m3) — >Bo((p1 - p2)?, m2, m3) — Eflco(pf, (p1 — P2)?,p3,m3, m%, m3)
UV finite

with f; = p2 — m2 + m2

P29

(Pl = /q (a2 —m3 +ie)[(q + p1)? — m +iell(a + p2)? — m3 +ie]

1 1 1
= EBo(pf,mS,mi) ~ 5Bo((P1 - p2)?, m2, m3) — Efzco(pi(pl — p2)?,p3,m3, m%, m3)

@ Now it only remains to solve the system and get the integrals C,, C,. We will not

do it here. These integrals would be written in terms of the scalar integrals Ag, By,
and Cg.
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Example 3
O000e00

Reduction of CH#

@ Decomposition

CHY =g Cop + p}'PYC11 + (P'P5 + P4PY)C12 + P5P5Con

@ By contracting with p}’, p5 and g,.., we get

(P1)uC" = pYCoo + P{PZC11 + PEPICiz + P} (P1.P2)C1z + Py (P1-P2)C22
(P2)uC" = p4Coo + Pf (P1.P2)C11 + PYP3C12 + P5 (P1-P2)Ci2 + P5P3C22
9, C* = DCqp + piCy1 + 2p1.p2C12 + P5C2p

5 equations for 4 variables Cyg, C11,C12,Co0

@ Rewriting the LHSs we get

g2 / 9> —mg + md 2 2 2 2
JCHY = = =B — ,mi,m m§C
G /q DyD1D;  Jq  DoDiD; o((P2 = P1)", Mz, Mz) + Mg Co
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Example 3
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Decomposition of C#”

(p)ucrv = [ P9k /q 2(D1— Do — 1)
q DoD1D; DoD,D;

_ /} q” 9“9 )
42 \DyD, DD, DoDiD,

1 1
EDZBl(pé,mé m3) + >(P1 = P2)"Bu((p2 — p1)?, mZ, m3)

+

1]DB ((pg*p])z mj,mz) zpﬁll/ 1Cl 2 21/1 2
@ anal ogously (pZ)ll« v

1 1
(P2)uC* = —prl(pf,mé m?) + 5(P1—p2)"By((p2 — p1)?, mZ, m3)

+ —D1 Bo((p2 — p1)?, m2,mg) — —fozcl Dé’fzcz
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Example 3
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Reduction of CH#

@ 5 equations now have the following form

DCoo + PiC11 + 2p1.p2C12 +P3C22 = Bo((p2 — p1)?,mf, m3) + mjCo 1)
Coo + PiCi1 + P1.P2Cr2 = %[Bo((pz —p1)?,mf, m3) +
+B1((p2 = p1)?, mi, m3) — f1.Cy] @
piCi2 +p1.p2Coz = %[Bl(pgv mg, m3) —
—B1((p2 — p1)%, mf, m3) —f,Cy] (3)
P1-P2C11 +P3C12 = %[Bl(pf, mg, m3) + By((p2 — p1)®, mf, m3) +
+Bo((P2 — p1)?, mF, m3) — f,C4] @
Coo + P1-P2C12 + P5Co2 = %[_Bl((pZ —p1)?,mZ, m3) — £,Cy] (5)

@ From eq. (1) we obtain Cyg which we can substitute to four remaining equations.
From egs. (2) and (4) we obtain C,4, C1, and from egs. (3) and (5) we obtain
Ci2,Coa.
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Reduction and threshold
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Reduction of B# and the threshold

@ Recall: By (p?,0,m?) = ;5 [Ao(0) — Ag(m?) — (p? — m?)Bo(p?,0,m?)]
@ Not allowed when p? = 0 (e.g photon self-energy)
@ Where is the problem?
— The problem lies in the decomposition. B, must be calculated directly.
e~ [ __a :
a (92 = m§ +ie)[(a + p1)? — m] +ie]

@ First step: Feynman parametrization: ai fo dxm

a=0g?—m3+ie, b=(q+p1)?—m?+ic

1
B“=/ dX/Q“{(q+xp —x?p? 4+ x(p? — mf + m3) — mj +ie}
0 q

@ Second step: substitution
a° = q+xp, dg =dq
A = x*p?—x(p® —mi +m§)+mj
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Reduction and threshold
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Reduction of B# and the threshold

@ After the substitution

1 ’r_ w 1 —_XpH
BY = / / Ezq Xp)- 2 :/ dx/ 2 ek 2
o Jo (@2 —A+ie) o q (@2 —A+ie)

@ This is to compare with:  B* = p*B;

1
Blz—/dx/ /dxxl )
0 (q/Z A+ IE
@ Using the formula for the generic integral In we get

_ 1 1 1 A
*(4ﬂu)%r(s)/ dxxA*fzf/ dx x {_77E+|n4ﬂ'*|n< 2I5>}
0 0 € 1

1 1 x2p2 — x(p2 —m2 + m2) + m2 — i
77A+/ dx x In P (P 1 o) o~ 1€
2 0 u?

B

@ Having the correct coefficient going with the divergent part A. Note that now one
only have to calculate ordinary 1-dimensional integral
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Reduction and threshold
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Summary

@ Dimensional regularization:

To make the divergence of the loop integrals explicit one can use procedure called
Dimensional regularization. One lowers the dimension of the space through which
one integrates and thus makes the originally divergent integrals finite. After
renormalizing the theory all the divergent parts 1 /¢ of all integrals cancel out.

@ Tensor reduction
One is not forced to calculate all the scalar as well as tensor integrals which rise in
the calculation of various Feynman diagrams. One only needs to know the result

for the scalar integrals Ag, Bg, Co, - . .. Other integrals can be expressed through
these basic integrals. Needless to say, this saves lots of CPU time.

Thank you for the attention.
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